首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site of change in pulmonary vascular resistance (PVR) after surfactant displacement with the detergent diocytl sodium sulfosuccinate (OT) was studied in the isolated canine left lower lobe preparation. Changes in PVR were assessed using the arterial and venous occlusion technique and the vascular pressure-flow relationship. Changes in alveolar surface tension were confirmed from measurements of pulmonary compliance as well as from measurements of surface tension of extracts from lung homogenates. After surfactant depletion (the perfusion rate constant) the total pressure gradient (delta PT) across the lobe increased from 13.4 +/- 1 to 17.1 +/- 0.8 mmHg. This increase in delta PT was associated with a significant increase in the arterial and venous gradients (3.7 +/- 0.3 to 4.9 +/- 0.4 and 5.7 +/- 0.5 to 9.4 +/- 0.6 mmHg, respectively) and a decrease in middle pressure gradient (4.1 +/- 0.8 to 2.9 +/- 0.6 mmHg). The vascular pressure-flow relationship supported these findings and showed that the mean slope increased by 52% (P less than 0.05), whereas the pressure intercept decreased slightly but not significantly (3.7 +/- 0.7 to 3.2 +/- 0.8 mmHg). These results suggest that the resistance of arteries and veins increases, whereas the resistance of the middle segment decreases after surfactant depletion. These effects were apparently due to surface tension that acts directly on the capillary wall. Direct visualization of subpleural capillaries supported the notion that capillaries become distended and recruited as alveolar surface tension increases. In the normal lung (perfused at constant-flow rate) changes in alveolar pressure (Palv) were transmitted fully to the capillaries as suggested by equal changes in pulmonary arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

3.
Previous investigations of autoregulatory mechanisms in the control of skin blood flow suffer from the possibility of interfering effects of the autonomic nervous system. To address this question, in 11 subjects cutaneous vascular responses were measured during acute changes in perfusion pressure (using Valsalva maneuver; VM) before and after ganglionic blockade via systemic trimethaphan infusion. Cutaneous vascular conductance at baseline (CVC(base)) and during the last 5 s of the VM (CVC(VM)) were measured from forearm (nonglabrous) and palm (glabrous) skin. During the VM without ganglionic blockade, compared with CVC(base), CVC(VM) decreased significantly at the palm [0.79 +/- 0.17 to 0.55 +/- 0.17 arbitrary units (AU)/mmHg; P = 0.002] but was unchanged at the forearm (0.13 +/- 0.02 to 0.16 +/- 0.02 AU/mmHg; P = 0.50). After ganglionic blockade, VM induced pronounced decreases in perfusion pressure, which resulted in significant increases in CVC(VM) at both forearm (0.19 +/- 0.03 to 0.31 +/- 0.07 AU/mmHg; P = 0.008) and palm (1.84 +/- 0.29 to 2.76 +/- 0.63 AU/mmHg; P = 0.003) sites. These results suggest that, devoid of autonomic control, both glabrous and nonglabrous skin are capable of exhibiting vasomotor autoregulation during pronounced reductions in perfusion pressure.  相似文献   

4.
The prevalence of ischemic heart disease is lower in premenopausal females than in males of corresponding age. This should be related to gender differences in coronary functions. We tested whether biomechanical differences exist between intramural coronary resistance arteries of male and female rats. Intramural branches of the left anterior descending coronary artery (uniformly approximately 200microm in diameter) were isolated, cannulated and studied by microarteriography. Intraluminal pressure was increased from 2 to 90mmHg in steps and steady-state diameters were measured. Measurements were repeated in the presence of vasoconstrictor U46619 (10(-6)M) and the endothelial coronary vasodilator bradykinin (BK) (10(-6)M). Finally, passive diameters were recorded in calcium-free saline. A similar inner radius and a higher wall thickness (41.5+/-2.9microm vs. 31.4+/-2.7microm at 50mmHg in the passive condition, p<0.05) resulted in lower tangential wall stresses in male rats (18.9+/-1.9kPa vs. 24.9+/-2.5kPa at 50mmHg, p<0.05). Isobaric elastic modulus of vessels from male animals was significantly smaller at higher pressures. Vasoconstrictor response was significantly stronger in male than in female animals. Endothelial relaxations induced by BK were not different. This is the first demonstration that biomechanical characteristics of intramural coronary resistance arteries of a mammalian species are different in the male and female sexes. Higher wall thickness and higher vascular contractility in males are associated with similar endothelial function and larger high-pressure elasticity compared to females. These gender differences in biomechanics of coronary resistance arteries of rats may contribute to our better understanding the characteristic physiological and pathological differences in humans.  相似文献   

5.
The human vagina is known to be heavily innervated by vasoactive intestinal polypeptide (VIP) immunoreactive nerve fibres. In the present study we have examined the effect of VIP (900 pmol x kg-1 x h-1, IV during 30 min) on vaginal lubrication and blood flow in fourteen normal non-pregnant women. Vaginal blood flow was measured by the heat clearance technique and the vaginal lubrication quantified by the weight gain of preweighed filter papers placed on the surface of the vaginal wall for 30 min. Arterial blood pressure, pulse frequency and the concentration of VIP in peripheral blood were monitored. VIP (median concentrations of 200-300 pmol x l-1) induced a significant increase in vaginal blood flow accompanied by a 100% increase in vaginal lubrication (from 27 mg/cm2 to 53 mg/cm2). The VIP infusion lead to a significant increase in pulse frequency and a significant fall in diastolic arterial blood pressure. The findings suggest that VIP may participate in the control of the local physiological changes observed during sexual arousal: genital vasodilation and increase in vaginal lubrication.  相似文献   

6.
In patients with obstructive sleep apnea (OSA), substantial elevations of systemic blood pressure (BP) and depressions of oxyhemoglobin saturation (SaO2) accompany apnea termination. The causes of the BP elevations, which contribute significantly to nocturnal hypertension in OSA, have not been defined precisely. To assess the relative contribution of arterial hypoxemia, we observed mean arterial pressure (MAP) changes following obstructive apneas in 11 OSA patients during non-rapid-eye-movement (NREM) sleep and then under three experimental conditions: 1) apnea with O2 supplementation; 2) hypoxemia (SaO2 80%) without apnea; and 3) arousal from sleep with neither hypoxemia nor apnea. We found that apneas recorded during O2 supplementation (SaO2 nadir 93.6% +/- 2.4; mean +/- SD) in six subjects were associated with equivalent postapneic MAP elevations compared with unsupplemented apneas (SaO2 nadir 79-82%): 18.8 +/- 7.1 vs. 21.3 +/- 9.2 mmHg (mean change MAP +/- SD); in the absence of respiratory and sleep disruption in eight subjects, hypoxemia was not associated with the BP elevations observed following apneas: -5.4 +/- 19 vs. 19.1 +/- 7.8 mmHg (P less than 0.01); and in five subjects, auditory arousal alone was associated with MAP elevation similar to that observed following apneas: 24.0 +/- 8.1 vs. 22.0 +/- 6.9 mmHg. We conclude that in NREM sleep postapneic BP elevations are not primarily attributable to arterial hypoxemia. Other factors associated with apnea termination, including arousal from sleep, reinflation of the lungs, and changes of intrathoracic pressure, may be responsible for these elevations.  相似文献   

7.
To compare the effects of exercise training and hydrochlorothiazide on left ventricular (LV) geometry and mass, blood pressure (BP), and hyperinsulinemia in older hypertensive adults, we studied 28 patients randomized either to a group (age 66.4 +/- 1.3 yr; n = 16) that exercised or to a group (age 65.3 +/- 1.2 yr; n = 12) that received hydrochlorothiazide for 6 mo. Endurance exercise training induced a 15% increase in peak aerobic power. The reduction in systolic BP was twofold greater with thiazide than with exercise (26.6 +/- 12.2 vs. 11.5 +/- 10.9 mmHg). Exercise and thiazide reduced LV wall thickness, LV mass index (14% in each group), and the LV wall thickness-to-radius ratio (h/r) similarly (exercise: before 0.48 +/- 0.2, after 0.42 +/- 0.01; thiazide: before 0.47 +/- 0.04, after 0.40 +/- 0.04; P = 0.017). The reductions in systolic BP and h/r were correlated in the exercise group (r = 0.70, P = 0.005) but not in the thiazide group. Exercise training reduced glucose-stimulated hyperinsulinemia (before: 13.65 +/- 2.6 vs. 9.84 +/- 1.5 mU.ml(-1).min; P = 0.04) and insulin resistance. Thiazide did not affect plasma insulin levels. The results suggest that although exercise is less effective in reducing systolic BP than thiazide, it can induce regression of LV hypertrophy similar in magnitude to thiazide. Unlike hydrochlorothiazide, exercise training can improve insulin resistance and aerobic capacity in older hypertensive people.  相似文献   

8.
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n=9, 1 mg/day) or placebo (n=9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59+/-2 vs. 71+/-2 beats/min, P<0.01). In both groups, exercise produced significant decreases in systolic BP (145+/-3 vs. 154+/-3 mmHg, P=0.01), diastolic BP (71+/-3 vs. 75+/-2 mmHg, P=0.04), mean BP (89+/-2 vs. 93+/-2 mmHg, P=0.02), MSNA (29+/-2 vs. 35+/-1 bursts/min, P<0.01), and FVR (33+/-4 vs. 55+/-10 units, P=0.01), whereas it increased FBF (2.7+/-0.4 vs. 1.6+/-0.2 ml x min(-1) x 100 ml(-1), P=0.02) and did not change HR (64+/-2 vs. 65+/-2 beats/min, P=0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.  相似文献   

9.
Endothelium-derived nitric oxide (NO) attenuates arteriolar constriction in the rat small intestine during periods of increased sympathetic nerve activity. This study was undertaken to test the hypothesis that a flow-dependent fall in arteriolar wall PO(2) serves as the stimulus for endothelial NO release under these conditions. Sympathetic nerve stimulation at 3-16 Hz induced frequency-dependent arteriolar constriction, with arteriolar wall O(2) tension (PO(2)) falling from 67 +/- 3 mmHg to as low as 41 +/- 6 mmHg. Arteriolar responses to nerve stimulation were enhanced after inhibition of NO synthase with N(G)-monomethyl-L-arginine (L-NMMA). Under a high-O(2) (20%) superfusate, the fall in wall PO(2) was significantly attenuated, arteriolar constrictions were increased by 57 +/- 9 to 66 +/- 12%, and these responses were no longer sensitive to L-NMMA. The high-O(2) superfusate had no effect on vascular smooth muscle responsiveness to NO (as judged by arteriolar responses to sodium nitroprusside) or on arteriolar wall oxidant activity (as determined by the reduction of tetranitroblue tetrazolium dye). These results indicate that a flow-dependent fall in arteriolar wall PO(2) may serve as a stimulus for the release of endothelium-derived NO during periods of increased sympathetic nerve activity.  相似文献   

10.
This study was designed to test the hypothesis that the pulsatility index (PI) of the umbilical artery flow velocity waveform varies as a function of placental vascular resistance. Placental vascular resistance was raised by a one-minute occlusion of the maternal inferior vena cava. Occlusion of the maternal inferior vena cava resulted in a decrease in fetal heart rate from 183 +/- 7.8 beats/min to 142 +/- 8.6 beats/min at the end of occlusion (P less than 0.05). Placental vascular resistance increased from 0.113 +/- 0.021 mmHg.ml-1.min during control to 0.151 +/- 0.033 mmHg.ml-1.min (P less than 0.05) during occlusion. The pulsatility index increased from 1.05 +/- 0.05 to 1.85 +/- 0.4 (P less than 0.05) during occlusion. After parasympathetic blockade with atropine fetal heart rate did not change during occlusion. Placental vascular resistance increased from 0.091 +/- 0.014 before to 0.121 +/- 0.021 mmHg.ml-1.min during occlusion (P less than 0.05). The pulsatility index increased from 0.98 +/- 0.1 before to 1.12 +/- 0.12 during occlusion (P less than 0.05). These results support the hypothesis that, in the fetal sheep, placental vascular resistance is one of the determinants of the pulsatility index of the umbilical artery.  相似文献   

11.
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans.  相似文献   

12.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

13.
We determined the effect of alpha-adrenergic blocking agent doxazosin on insulin resistance in 19 hypertensive patients (blood pressure [BP] >160/90 mmHg) with obesity (mean body mass index [BMI]: 26.7 +/- 1.9 kg/m (2)). Patients received doxazosin 4 mg/day for 12 months. Systolic and diastolic BP decreased from 169 +/- 10.8 mmHg to 147 +/- 11.9 mmHg (p < 0.0001) and from 102 +/- 8.1 mmHg to 87 +/- 5.0 mmHg (p < 0.0001), respectively. Insulin resistance and fasting immunoreactive insulin (IRI) were lower at study end vs. baseline (HOMA-R = 1.29 +/- 0.38 vs. 3.58 +/- 2.23 [p = 0.022]; IRI = 6.00 +/- 1.88 microU/ml vs 13.74 +/- 8.51 microU/ml [p = 0.046]). Total cholesterol was significantly reduced following treatment. Circulating TNF-alpha and leptin levels decreased significantly within 3 months of treatment; leptin was independently associated with insulin resistance when adjusted for BMI. We conclude that doxazosin improves insulin resistance and improves dyslipidemia in obese hypertensive patients, and has a beneficial effect on adipose endocrine activity.  相似文献   

14.
Whereas the sympathetic nervous system has a well-established role in blood pressure (BP) regulation, it is not clear whether long-term levels of BP are affected by parasympathetic function or dysfunction. We tested the hypothesis that chronic blockade of the parasympathetic nervous system has sustained effects on BP, heart rate (HR), and BP variability (BPV). Sprague-Dawley rats were instrumented for monitoring of BP 22-h per day by telemetry and housed in metabolic cages. After the rats healed from surgery and a baseline control period, scopolamine methyl bromide (SMB), a peripheral muscarinic antagonist, was infused intravenously for 12 days. This was followed by a 10-day recovery period. SMB induced a rapid increase in mean BP from 98 +/- 2 mmHg to a peak value of 108 +/- 2 mmHg on day 2 of the SMB infusion and then stabilized at a plateau value of +3 +/- 1 mmHg above control (P < 0.05). After cessation of the infusion, the mean BP fell by 6 +/- 1 mmHg. There was an immediate elevation in HR that remained significantly above control on the last day of SMB infusion. SMB also induced a decrease in short-term (within 30-min periods) HR variability and an increase in both short-term and long-term (between 30-min periods) BPV. The data suggest that chronic peripheral muscarinic blockade leads to modest, but sustained, increases in BP, HR, and BPV, which are known risk factors for cardiovascular morbidity.  相似文献   

15.
Social, olfactory, and oestrous cycle influences on the frequency of flank-marking and vaginal marking were studied in female hamsters. Vaginal marking was more frequent in the presence of males or their odours than females or their odours. Vaginal marking frequency was greatest the day before oestrus (day 4), intermediate on days 2 and 3, and zero on the oestrous day. The probable sexual advertisement functions of vaginal marking were discussed. In contrast, flank-marking by females was stimulated more by other female odours than by male odours. The frequency of flank-marking was elevated by agonistic encounters and was reduced by sexual encounters. Flank-marking seems to have functions related to functions of aggression among hamsters.  相似文献   

16.
The purpose of this study was to investigate the acute blood pressure (BP) and hemodynamic effects of sodium chloride (3% intravenous solution). Although many studies link a change in dietary sodium to a change in BP, few consider the effects of sodium concentration in the blood on BP. We hypothesized that an intravenous sodium load would increase BP, and we quantified alterations in cardiac output (Qc) and peripheral vascular resistance (PVR). Thirteen subjects (age 27 +/- 2 yr) underwent a 60-min 3% saline infusion (0.15 ml.kg(-1).min(-1)). BP was assessed on a beat-to-beat basis with a Finometer, Qc was assessed via the CO(2) rebreathing technique, and PVR was derived. Serum sodium and osmolality increased, and hematocrit declined during the infusion (ANOVA, P < 0.01). Mean arterial pressure (MAP) increased continuously during the infusion from 81.8 +/- 3.4 to 91.6 +/- 3.6 mmHg (ANOVA, P < 0.01). BP responsiveness to sodium was expressed as the slope of the serum sodium-MAP relationship and averaged 1.75 +/- 0.34 mmHg.mmol(-1).l(-1). BP responsiveness to the volume change was expressed as the slope of the hematocrit-MAP relationship and averaged -2.2 +/- 0.35 mmHg/%. The early change in MAP was mediated by an increase in Qc and the late change by an increase in PVR (P < 0.05), corresponding to a 30% increase in plasma norepinephrine. In conclusion, an acute infusion of hypertonic saline was effective in increasing BP, and both sodium and volume appear to be involved in this increase; acute BP responsiveness to serum sodium can be quantified using a MAP-sodium plot.  相似文献   

17.
The cardiovascular response to an arousal occurring at the termination of an obstructive apnea is almost double that to a spontaneous arousal. We investigated the hypothesis that central plus peripheral chemoreceptor stimulation, induced by hypercapnic hypoxia (HH), augments the cardiovascular response to arousal from sleep. Auditory-induced arousals during normoxia and HH (>10-s duration) were analyzed in 13 healthy men [age 24 +/- 1 (SE) yr]. Subjects breathed on a respiratory circuit that held arterial blood gases constant, despite the increased ventilation associated with arousal. Arousals were associated with a significant increase in mean arterial blood pressure at 5 s (P < 0.001) and with a significant decrease in the R-R interval at 3 s (P < 0.001); however, the magnitude of the changes was not significantly different during normoxia compared with HH (mean arterial blood pressure: normoxia, 91 +/- 4 to 106 +/- 4 mmHg; HH, 91 +/- 4 to 109 +/- 5 mmHg; P = 0.32; R-R interval: normoxia, 1.12 +/- 0.04 to 0.90 +/- 0.05 s; HH, 1.09 +/- 0.05 to 0.82 +/- 0.03 [corrected] s; P = 0.78). Mean ventilation increased significantly at the second breath postarousal for both conditions (P < 0.001), but the increase was not significantly different between the two conditions (normoxia, 5.35 +/- 0.40 to 9.57 +/- 1.69 l/min; HH, 8.57 +/- 0.63 to 11.98 +/- 0.70 l/min; P = 0.71). We conclude that combined central and peripheral chemoreceptor stimulation with the use of HH does not interact with the autonomic outflow associated with arousal from sleep to augment the cardiovascular response.  相似文献   

18.
Utilizing the arterial and venous occlusion technique, the effects of lung inflation and deflation on the resistance of alveolar and extraalveolar vessels were measured in the dog in an isolated left lower lobe preparation. The lobe was inflated and deflated slowly (45 s) at constant speed. Two volumes at equal alveolar pressure (Palv = 9.9 +/- 0.6 mmHg) and two pressures (13.8 +/- 0.8 mmHg, inflation; 4.8 +/- 0.5 mmHg, deflation) at equal volumes during inflation and deflation were studied. The total vascular pressure drop was divided into three segments: arterial (delta Pa), middle (delta Pm), and venous (delta Pv). During inflation and deflation the changes in pulmonary arterial pressure were primarily due to changes in the resistance of the alveolar vessels. At equal Palv (9.9 mmHg), delta Pm was 10.3 +/- 1.2 mmHg during deflation compared with 6.8 +/- 1.1 mmHg during inflation. At equal lung volume, delta Pm was 10.2 +/- 1.5 mmHg during inflation (Palv = 13.8 mmHg) and 5.0 +/- 0.7 mmHg during deflation (Palv = 4.8 mmHg). These measurements suggest that the alveolar pressure was transmitted more effectively to the alveolar vessels during deflation due to a lower alveolar surface tension. It was estimated that at midlung volume, the perimicrovascular pressure was 3.5-3.8 mmHg greater during deflation than during inflation.  相似文献   

19.
Using in vivo and isolated perfused liver preparations of BALB/c mice, we determined the roles of the liver and splanchnic vascular bed in anaphylactic hypotension. Intravenous injection of ovalbumin antigen into intact-sensitized mice decreased systemic arterial pressure (P(sa)) from 92 +/- 2 to 39 +/- 3 (SE) mmHg but only slightly increased portal venous pressure (P(pv)) from 6.4 +/- 0.1 cmH(2)O to the peak of 9.9 +/- 0.5 cmH(2)O at 3.5 min after antigen. Elimination of the splanchnic vascular beds by ligation of the celiac and mesenteric arteries, combined with total hepatectomy, attenuated anaphylactic hypotension. Ligation of these arteries alone, but not partial hepatectomy (70%), similarly attenuated anaphylactic hypotension. In contrast, isolated sensitized mouse liver perfused portally at constant flow did not show anaphylactic venoconstriction but, rather, substantial constriction in response to the anaphylaxis-associated platelet-activating factor, indicating that venoconstriction in mice in vivo may be induced by mediators released from extrahepatic tissues. These results suggest that splanchnic vascular beds are involved in BALB/c mouse anaphylactic hypotension. They presumably act as sources of chemical mediators to cause the anaphylaxis-induced portal hypertension, which induced splanchnic congestion, resulting in a decrease in circulating blood volume and, thus, systemic arterial hypotension. Mouse hepatic anaphylactic venoconstriction may be induced by factors outside the liver, but not by anaphylactic reaction within the liver.  相似文献   

20.
Systemic hemodynamics, including forearm blood flow and ventilatory parameters, were evaluated in 21 subjects before and after exposure to 8 h of poikilocapnic hypoxia. To evaluate the role of sympathetic nervous system activation in the changes, in 10 of these subjects, we measured muscle sympathetic nerve activity (MSNA) before and after exposure, and the remaining 11 subjects received intra-arterial phentolamine infusion in the brachial artery to define vascular tone in the absence of sympathetically mediated vasoconstriction. Short-term ventilatory acclimatization occurred as evidenced by a decrease in resting Pco(2) (from 42 +/- 1.4 to 37 +/- 0.96 mmHg) and by an increase in the slope of the ventilatory response to acute hypoxia [from 0.7 +/- 0.1 to 1.2 +/- 0.2 l.min(-1).%Sp(O(2)) (blood O(2) saturation from pulse oximetry)] after exposure. Subjects demonstrated a significant increase in resting heart rate (from 61 +/- 2 to 65 +/- 2 beats/min) and diastolic blood pressure (from 64.8 +/- 2.7 to 70.4 +/- 2.0 mmHg). MSNA did not change significantly after exposure, although there was a trend toward a decrease in burst frequency (from 19.8 +/- 4.1 to 14.3 +/- 1.2 bursts/min). Forearm vascular resistance showed a significant decrease after termination of exposure (from 37.7 +/- 3.6 to 27.6 +/- 2.7 mmHg.ml(-1).min.100 g tissue, P < 0.05). Initially, progressive isocapnic hypoxia elicited significant vasodilation, but after 8 h of poikilocapnic hypoxic exposure, the acute challenge failed to change forearm vascular resistance. Local alpha-blockade with phentolamine restored the vasodilatory response to acute hypoxia in the postexposure setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号