首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin is secreted as a series of punctuated secretory bursts superimposed on variable basal insulin release. The contribution of these secretory bursts to overall insulin secretion has been estimated on the basis of peripheral vein sampling in humans to encompass > or =75% of overall insulin release. A similar contribution of the pulsatile mode of release was inferred in a canine model by use of portal vein sampling. The primary regulation of insulin secretion is through perturbation of the mass and frequency of these secretory bursts. The mode of delivery of insulin into the circulation seems important for insulin action; therefore, physiological conditions that alter the pattern of insulin release may affect insulin action through this mechanism. Transhepatic intraportal shunt in humans may provide access to portal vein samples, thus potentially improving the sensitivity of detecting and quantitating the frequency, mass, and amplitude of secretory bursts along with basal release and the regularity of these variables. To establish the insulin-secretory mechanism in nondiabetic humans by the use of portal vein sampling, we here assessed the mass, frequency, amplitude, and overall contribution of pulsatile insulin secretion by deconvolution analysis of portal vein insulin profiles. We find that, in nondiabetic humans fasted overnight, the portal vein insulin concentration oscillates at a periodicity of 4.1 +/- 0.2 min/pulse and with secretory peak amplitudes averaging 660% of basal (interpulse) release. The frequency was confirmed by spectral and autocorrelation analyses. The punctuated insulin-secretory bursts partially overlap and are responsible for the majority (70 +/- 4%) of insulin release. After ingestion of a mixed meal, the insulin release was increased through amplification of the secretory burst mass (507 +/- 104 vs. 1,343 +/- 211 pmol x l(-1) x min(-1), P < 0.001), whereas frequency (4.4 +/- 0.2 vs. 4.3 +/- 0.2, P = 0.86) and basal secretion (62 +/- 14 vs. 91 +/- 22 pmol x l(-1) x min(-1), P = 0.33) were unaffected. One subject with diabetes and cirrhosis had a similar insulin-secretory pattern, whereas a subject with insulin-dependent diabetes mellitus and minimal insulin release had preserved pulsatile release. A single subject was entrained to show agreement between entrained frequency and portal vein insulin oscillations. We conclude that insulin release in the human portal vein occurs at a mean periodicity of 4.4 +/- 0.2 min with a high signal-to-noise ratio (pulse amplitude 660% of basal). The impact of noise on the detected high frequency cannot be excluded.  相似文献   

2.
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.  相似文献   

3.
This study tested the hypothesis that central mechanisms regulating luteinizing hormone (LH) secretion are responsive to insulin. Our approach was to infuse insulin into the lateral ventricle of six streptozotocin-induced diabetic sheep in an amount that is normally present in the CSF when LH secretion is maintained by peripheral insulin administration. In the first experiment, we monitored cerebrospinal fluid (CSF) insulin concentrations every 3-5 h in four diabetic sheep given insulin by peripheral injection (30 IU). The insulin concentration in the CSF was increased after insulin injection, and there was a positive relationship between CSF and plasma concentrations of insulin (r = 0.80, P < 0.01). In the second experiment, peripheral insulin administration was discontinued, and the sheep received either an intracerebroventricular (i.c.v.) infusion of insulin (12 mU/day in 2.4 ml saline) or saline (2.4 ml/day) for 5 days (n = 6) in a crossover design. The dose of insulin (i.c.v.) was calculated to approximate the increase in CSF insulin concentration found after peripheral insulin treatment. To monitor LH secretory patterns, blood samples were collected by jugular venipuncture at 10-min intervals for 4 h on the day before and 5 days after the start of i.c.v. insulin infusion. To monitor the increase in CSF insulin concentrations, a single CSF sample was collected one and four days after the start of the central infusion. The i.c.v. insulin infusion increased CSF insulin concentrations above those in saline-treated animals (P < 0.05) and maintained them at or above the peak levels achieved after peripheral insulin treatment. Central insulin infusion did not affect peripheral (plasma) insulin or glucose concentrations. LH pulse frequency in insulin-treated animals was greater than that in saline-treated animals (3.5 +/- 0.2 vs. 2.3 +/- 0.3 pulses/4 h, P < 0.01), but it was less than that during peripheral insulin treatment (4.8 +/- 0.2 pulses/4 h, P < 0.01). Our findings suggest that physiologic levels of central insulin supplementation are able to increase pulsatile LH secretion in diabetic sheep with low peripheral insulin. These results are consistent with the notion that central insulin plays a role in regulating pulsatile GnRH secretion.  相似文献   

4.
Insulin is secreted in discrete insulin secretory bursts. Regulation of insulin release is accomplished almost exclusively by modulation of insulin pulse mass, whereas the insulin pulse interval remains stable at approximately 4 min. It has been reported that in vivo insulin pulses can be entrained to a pulse interval of approximately 10 min by infused glucose oscillations. If oscillations in glucose concentration play an important role in the regulation of pulsatile insulin secretion, abnormal or absent glucose oscillations, which have been described in type 2 diabetes, might contribute to the defective insulin secretion. Using perifused human islets exposed to oscillatory vs. constant glucose, we questioned 1) whether the interval of insulin pulses released by human islets is entrained to infused glucose oscillations and 2) whether the exposure of islets to oscillating vs. constant glucose confers an increased signal for insulin secretion. We report that oscillatory glucose exposure does not entrain insulin pulse frequency, but it amplifies the mass of insulin secretory bursts that coincide with glucose oscillations (P < 0.001). Dose-response analyses showed that the mode of glucose drive does not influence total insulin secretion (P = not significant). The apparent entrainment of pulsatile insulin to infused glucose oscillations in nondiabetic humans in vivo might reflect the amplification of underlying insulin secretory bursts that are detected as entrained pulses at the peripheral sampling site, but without changes in the underlying pacemaker activity.  相似文献   

5.
Insulin is largely secreted as serial secretory bursts superimposed on basal release, insulin secretion is regulated through changes of pulse mass and frequency, and the insulin release pattern affects insulin action. Coordinate insulin release is preserved in the isolated perfused pancreas, suggesting intrapancreatic coordination. However, occurrence of glucose concentration oscillations may influence the process in vivo, as it does for ultradian oscillations. To determine if rapid pulsatile insulin release may be induced by minimal glucose infusions and to define the necessary glucose quantity, we studied six healthy individuals during brief repetitive glucose infusions of 6 and 2 mg x kg(-1) x min(-1) for 1 min every 10 min. The higher dose completely synchronized pulsatile insulin release at modest plasma glucose changes ( approximately 0.3 mM = approximately 5%), with large ( approximately 100%) amplitude insulin pulses at every single glucose induction (n = 54) at a lag time of 2 min (P < 0.05), compared with small (10%) and rare (n = 3) uninduced insulin excursions. The smaller glucose dose induced insulin pulses at lower significance levels and with considerable breakthrough insulin release. Periodicity shift from either 7- to 12-min or from 12- to 7-min intervals between consecutive glucose (6 mg x kg(-1) x min(-1)) infusions in six volunteers revealed rapid frequency changes. The orderliness of insulin release as estimated by approximate entropy (1.459 +/- 0.009 vs. 1.549 +/- 0.027, P = 0.016) was significantly improved by glucose pulse induction (n = 6; 6 mg x kg(-1) x min(-1)) compared with unstimulated insulin profiles (n = 7). We conclude that rapid in vivo oscillations in glucose may be an important regulator of pulsatile insulin secretion in humans and that the use of an intermittent pulsed glucose induction to evoke defined and recurrent insulin secretory signals may be a useful tool to unveil more subtle defects in beta-cell glucose sensitivity.  相似文献   

6.
The effects of a 10-day low-calorie diet (LCD; n = 8) or exercise training (ET; n = 8) on insulin secretion and action were compared in obese men (n = 9) and women (n = 7), aged 53 +/- 1 yr, with abnormal glucose tolerance by using a hyperglycemic clamp with superimposed arginine infusion and a high-fat drink. Body mass (LCD, 115 +/- 5 vs. 110 +/- 5 kg; ET, 111 +/- 7 vs. 109 +/- 7 kg; P < 0. 01) and fasting plasma glucose (LCD, 115 +/- 10 vs. 99 +/- 4 mg/dl; ET, 112 +/- 4 vs. 101 +/- 5 mg/dl, P < 0.01) and insulin (LCD, 23.9 +/- 5.6 vs. 15.2 +/- 3.9 microU/ml; ET, 17.6 +/- 1.9 vs. 13.9 +/- 2. 4 microU/ml; P < 0.05) decreased in both groups. There was a 40% reduction in plasma insulin during hyperglycemia (0-45 min) after LCD (peak: 118 +/- 18 vs. 71 +/- 14 microU/ml; P < 0.05) and ET (69 +/- 14 vs. 41 +/- 7 microU/ml; P < 0.05) and trends for reductions during arginine infusion and a high-fat drink. The 56% increase in glucose uptake after ET (4.95 +/- 0.90 vs. 7.74 +/- 0.82 mg. min-1. kg fat-free mass-1; P < 0.01) was significantly (P < 0.01) greater than the 19% increase (5.72 +/- 1.12 vs. 6.80 +/- 0.94 mg. min-1. kg fat-free mass-1; P = not significant) that occurred after LCD. The marked increase in glucose disposal after ET, despite lower insulin levels, suggests that short-term exercise is more effective than diet in enhancing insulin action in individuals with abnormal glucose tolerance.  相似文献   

7.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

8.
We have studied the effect of insulin hypoglycemia on the secretion of pancreatic polypeptide (PP) in 14 obese subjects with normal glucose tolerance and in 6 normal controls. Infusion of insulin 0.1 U/kg/h in controls and 0.12 U/kg/h in the obese, for one hour, produced a progressive hypoglycemia, similar in both groups (nadir 2 mmol/l at 50 min). The secretion of PP was less in obese subjects than in controls (peak 116 mmol/l vs 184 pmol/l, P less than 0.01) (integrated secretion sigma delta PP 288 vs 472 pmol/l, P less than 0.01) and was also delayed in the obese subjects beginning at 50 min instead of 40 min. The secretion of glucagon and of C-peptide were not different in the two groups, but the integrated response of ACTH was higher in the obese (sigma delta ACTH 52 pmol/l vs 25 pmol/l, P less than 0.01). The secretory response of growth hormone (STH) was smaller in the obese group (peak 8.6 +/- 1.28 vs 21.4 +/- 6.4 ng/ml, P less than 0.01). The reduced secretion of PP in obese subjects could be due to impaired sensitivity to hypoglycemia of the central control mechanism for PP release. The similarity of the reductions in the secretion of both PP and STH support this hypothesis, although a reduction in the secretory capacity of pancreatic PP cells cannot be excluded.  相似文献   

9.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

10.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

11.
Adiponectin is an adipocytokine that is hypothesized to be involved in the regulation of insulin action. The purpose of the present investigation was to determine whether plasma adiponectin is altered in conjunction with enhanced insulin action with exercise training. An insulin sensitivity index (S(I)) and fasting levels of glucose, insulin, and adiponectin were assessed before and after 6 mo of exercise training (4 days/wk for approximately 45 min at 65-80% peak O(2) consumption) with no loss of body mass (PRE, 91.9 +/- 3.8 kg vs. POST, 91.6 +/- 3.9 kg) or fat mass (PRE, 26.5 +/- 1.8 kg vs. POST, 26.7 +/- 2.2 kg). Insulin action significantly (P < 0.05) improved with exercise training (S(I) +98%); however, plasma adiponectin concentration did not change (PRE, 6.3 +/- 1.5 microg/ml vs. POST, 6.6 +/- 1.8 microg/ml). In contrast, in a separate group of subjects examined before and after weight loss, there was a substantial increase in adiponectin (+281%), which was accompanied by enhanced insulin action (S(I), +432%). These data suggest that adiponectin is not a contributory factor to the exercise-related improvements in insulin sensitivity.  相似文献   

12.
The present study was undertaken to establish in normal volunteers the alterations in beta-cell responsiveness to glucose associated with a constant infusion of glucagon-like peptide-1 (GLP-1) or a pretreatment infusion for 60 min. A high-dose graded glucose infusion protocol was used to explore the dose-response relationship between glucose and insulin secretion. Studies were performed in 10 normal volunteers, and insulin secretion rates (ISR) were calculated by deconvolution of peripheral C-peptide levels by use of a two-compartmental model that utilized mean kinetic parameters. During the saline study, from 5 to 15 mM glucose, the relationship between glucose and ISR was linear. Constant GLP-1 infusion (0.4 pmol x kg(-1) x min(-1)) shifted the dose-response curve to the left, with an increase in the slope of this curve from 5 to 9 mM glucose from 71.0 +/- 12.4 pmol x min(-1) x mM(-1) during the saline study to 241.7 +/- 36.6 pmol x min(-1) x mM(-1) during the constant GLP-1 infusion (P < 0.0001). GLP-1 consistently stimulated a >200% increase in ISR at each 1 mM glucose interval, maintaining plasma glucose at <10 mM (P < 0.0007). Pretreatment with GLP-1 for 60 min resulted in no significant priming of the beta-cell response to glucose (P = 0.2). Insulin clearance rates were similar in all three studies at corresponding insulin levels. These studies demonstrate that physiological levels of GLP-1 stimulate glucose-induced insulin secretion in a linear manner, with a consistent increase in ISR at each 1 mM glucose interval, and that they have no independent effect on insulin clearance and no priming effect on subsequent insulin secretory response to glucose.  相似文献   

13.
Impaired glucose tolerance (IGT) and non-insulin-dependent diabetes mellitus (NIDDM) are associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose. The aim of this study was to establish whether acute hyperglycemia per se plays a role in inducing this defect in beta-cell response. Seven healthy volunteers with no family history of NIDDM were studied on two occasions during a 12-h oscillatory glucose infusion with a periodicity of 144 min. Once, low-dose glucose was infused at a mean rate of 6 mg x kg(-1) x min(-1) and amplitude 33% above and below the mean rate, and, once, high-dose glucose was infused at 12 mg x kg(-1) x min(-1) and amplitude 16% above and below the mean rate. Mean glucose levels were significantly higher during the high-dose compared with the low-dose glucose infusion [9.5 +/- 0.8 vs. 6.8 +/- 0.2 mM (P < 0.01)], resulting in increased mean insulin secretion rates [ISRs; 469.1 +/- 43.8 vs. 268.4 +/- 29 pmol/min (P < 0.001)] and mean insulin levels [213.6 +/- 46 vs. 67.9 +/- 10.9 pmol/l (P < 0.008)]. Spectral analysis evaluates the regularity of oscillations in glucose, insulin secretion, and insulin at a predetermined frequency. Spectral power for glucose, ISR, and insulin was reduced during the high-dose glucose infusion [11.8 +/- 1.4 to 7.0 +/- 1.6 (P < 0.02), 7.6 +/- 1.5 to 3.2 +/- 0.5 (P < 0.04), and 10.5 +/- 1.6 to 4.6 +/- 0.7 (P < 0.01), respectively]. In conclusion, short-term infusion of high-dose glucose to obtain glucose levels similar to those previously seen in IGT subjects results in reduced spectral power for glucose, ISR, and insulin. The reduction in spectral power previously observed for ISR in IGT or NIDDM subjects may be due partly to hyperglycemia.  相似文献   

14.
It is well established that subjects with liver cirrhosis are insulin resistant, but the contribution of defects in insulin secretion and/or action to glucose intolerance remains unresolved. Healthy individuals and subjects with liver cirrhosis were studied on two occasions: 1) an oral glucose tolerance test was performed, and 2) insulin secretion was inhibited and glucose was infused in a pattern and amount mimicking the systemic delivery rate of glucose after a carbohydrate meal. Insulin was concurrently infused to mimic a healthy postprandial insulin profile. Postabsorptive glucose concentrations were equal (5.36 +/- 0.12 vs. 5.40 +/- 0.25 mmol/l, P = 0.89), despite higher insulin (P < 0.01), C-peptide (P < 0.01), and free fatty acid (P = 0.05) concentrations in cirrhotic than in control subjects. Endogenous glucose release (EGR; 11.50 +/- 0.50 vs. 11.73 +/- 1.00 mumol.kg(-1).min(-1), P = 0.84) and the contribution of gluconeogenesis to EGR (6.60 +/- 0.47 vs. 6.28 +/- 0.64 mumol.kg(-1).min(-1), P = 0.70) were unaltered by cirrhosis. A minimal model recently developed for the oral glucose tolerance test demonstrated an impaired insulin sensitivity index (P < 0.05), whereas the beta-cell response to glucose was unaltered (P = 0.72). During prandial glucose and insulin infusions, the integrated glycemic response was greater in cirrhotic than in control subjects (P < 0.05). EGR decreased promptly and comparably in both groups, but glucose disappearance was insufficient at the prevailing glucose concentration (P < 0.05). Moreover, identical rates of [3-(3)H]glucose infusion produced higher tracer concentrations in cirrhotic than in control subjects (P < 0.05), implying a defect in glucose uptake. In conclusion, carbohydrate intolerance in liver cirrhosis is determined by insulin resistance and the ability of glucose to stimulate insulin secretion. During prandial glucose and insulin concentrations, EGR suppression was unaltered, but glucose uptake was impaired, which demonstrates that intolerance can be ascribed to a defect in glucose uptake, rather than abnormalities in glucose production or beta-cell function. Although insulin secretion ameliorates glucose intolerance, impaired glucose uptake during physiological glucose and insulin concentrations produces marked and sustained hyperglycemia, despite concurrent abnormalities in glucose production or insulin secretion.  相似文献   

15.
Pancreatic amyloid is found in patients with insulinomas and type 2 diabetes. To study mechanisms of islet amyloidogenesis, we produced transgenic mice expressing the unique component of human islet amyloid, human islet amyloid polypeptide (hIAPP). These mice develop islet amyloid after 12 mo of high-fat feeding. To determine whether we could accelerate the rate of islet amyloid formation, we crossbred our hIAPP transgenic animals with RIP-Tag mice that develop islet tumors and die at 12 wk of age from hypoglycemia. At 12 wk of age, this new line of hIAPPxRIP-Tag mice was heavier (29.7 +/- 1.0 vs. 25.0 +/- 1.3 g, P < 0.05) and had increased plasma glucose levels (4.6 +/- 0.4 vs. 2.9 +/- 0.6 mmol/l, P < 0.05) compared with littermate RIP-Tag mice. However, the hIAPPxRIP-Tag mice did not display islet amyloid or amyloid fibrils despite high circulating hIAPP levels (24.6 +/- 7.0 pmol/l). Interestingly, hIAPPxRIP-Tag mice had a longer life span than RIP-Tag mice (121 +/- 8 vs. 102 +/- 5 days, P < 0.05). This increase in life span in hIAPPxRIP-Tag was positively correlated with body weight (r = 0.48, P < 0.05) and was associated with decreased insulin sensitivity compared with RIP-Tag mice. hIAPPxRIP-Tag mice did not develop amyloid during their 4-mo life span, suggesting that increased hIAPP secretion is insufficient for islet amyloid formation within such a short time. However, hIAPPxRIP-Tag mice did have an increase in life span that was associated with insulin resistance, suggesting that hIAPP has extrapancreatic effects, possibly on peripheral glucose metabolism.  相似文献   

16.
Glycated insulin was evaluated in plasma and biological tissues of diabetic animal models by immunocytochemistry (ICC) and a novel radioimmunoassay. Glycated insulin circulated at 0.10 +/- 0.04 ng/ml and 2.20 +/- 0.14 ng/ml in lean and diabetic obese (ob/ob) mice, corresponding to 12.5 and 9.8% total plasma insulin, respectively. The concentration of glycated insulin was elevated 22-fold in obese mice compared to controls (P < 0.001). In the pancreas, glycated insulin was 48 +/- 10 and 83 +/- 4 ng/g wt (P < 0.05) in lean and obese mice, respectively, representing approximately 2% total insulin in the diabetic pancreas (4.60 +/- 0.17 microg/g wt). ICC revealed fluorescent positively stained cells in pancreatic islets from hydrocortisone (HC)-treated diabetic rats. Fasting of HC-treated rats, resulted in 3-fold and 15-fold reductions in plasma glycated insulin (P < 0.01) and insulin (P < 0.001), respectively. Following a 30 min feeding period in these insulin resistant rats, plasma glucose, insulin, and glycated insulin increased (P < 0.001) rapidly with 1.4-, 1.6-, and 2.9-fold elevations, respectively. Injection of HC-treated rats with insulin (50 U/kg) resulted in a rapid 33% decrease of plasma glucose (P < 0.001) and a marked 4-fold increase in plasma insulin (P < 0.01), whereas glycated insulin concentrations remained unchanged. Since glycation of insulin impairs biological activity, physiologically regulated secretion of glycated insulin into the circulation in diabetic animal models suggests a role in the pathogenesis of diabetes.  相似文献   

17.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

18.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

19.
We aimed to investigate how assimilation of nutrients affects the postprandial responses of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and to evaluate the effect of pancreatic enzyme substitution (PES) on insulin secretion in patients with chronic pancreatitis (CP) and pancreatic exocrine insufficiency (PEI). Eight male patients with CP and PEI were studied. Blood was sampled frequently on two separate days after ingestion of a liquid meal with and without PES, respectively. Eight healthy male subjects served as a control group. beta-Cell responsiveness was estimated as changes in insulin secretion rates in response to changes in postprandial plasma glucose (PG). There was no difference in the PG incremental area under curve (AUC) for patients with and without PES [406 +/- 100 vs. 425 +/- 80 mM.4 h (mean +/- SE), P = 0.8]. The response of total GLP-1 was higher after PES (AUC: 7.8 +/- 1.2 vs. 5.3 +/- 0.6 nM.4 h, P = 0.01), as was the response of total GIP (AUC: 32.7 +/- 7.5 vs. 21.1 +/- 8.3 nM.4 h, P = 0.01). Concurrently, both plasma insulin, plasma C-peptide, and total insulin secretion increased after PES (AUC: 17.7 +/- 4.2 vs. 13.6 +/- 2.9 nM.4 h, P = 0.02; 237 +/- 31.4 vs. 200 +/- 27.4 nM.4 h, P = 0.005; and 595 +/- 82 vs. 497 +/- 80 pmol.kg(-1).4 h, P = 0.01, respectively). beta-Cell responsiveness to glucose was not significantly different on the two study days for patients with CP. These results suggest that the secretion of GLP-1 and GIP is under influence of the digestion and absorption of nutrients in the small intestine and that PES increases insulin secretion.  相似文献   

20.
Herein, we bridge beta-cell function and morphology in minipigs. We hypothesized that different aspects of beta-cell dysfunction are present in obesity and obesity with reduced beta-cell mass by using pulsatile insulin secretion as an early marker. Measures for beta-cell function (glucose and arginine stimulation plus baseline and glucose-entrained pulsatile insulin secretion) and islet morphology were studied in long-term (19-20 mo) obese (n = 5) and obese beta-cell-reduced [nicotinamide + streptozotocin (STZ), n = 5] minipigs and normal controls, representing different stages in the development toward type 2 diabetes. Acute insulin response (AIR) to glucose and arginine were, surprisingly, normal in obese (0.3 g/kg glucose: AIR = 246 +/- 119 vs. 255 +/- 61 pM in control; 67 mg/kg arginine: AIR = 230 +/- 124 vs. 214 +/- 85 pM in control) but reduced in obese-STZ animals (0.3 g/kg glucose: AIR = 22 +/- 36, P < 0.01; arginine: AIR = 87 +/- 92 pM, P < 0.05 vs. control). Baseline pulsatile insulin secretion was reduced in obese (59 +/- 16 vs. 76 +/- 16% in control, P < 0.05) and more so in obese-STZ animals (43 +/- 13%, P < 0.01), whereas regularity during entrainment was increased in obese animals (approximate entropy: 0.85 +/- 0.14 vs. 1.13 +/- 0.13 in control, P < 0.01). Beta-cell mass (mg/kg body wt) was normal in obese and reduced in obese-STZ animals, with pancreatic fat infiltration in both groups. In conclusion, obesity and insulin resistance are not linked with a general reduction of beta-cell function, but dynamics of insulin secretion are perturbed. The data suggest a sequence in the development of beta-cell dysfunction, with the three groups representing stages in the progression from normal physiology to diabetes, and assessment of pulsatility as the single most sensitive marker of beta-cell dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号