首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

2.
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).  相似文献   

3.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

4.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics.  相似文献   

5.
Prion diseases are neurodegenerative disorders characterized by the aggregation of an abnormal form of prion protein. The interaction of prion protein and cellular membrane is crucial to elucidate the occurrence and development of prion diseases. Its fragment, residues 106–126, has been proven to maintain the pathological properties of misfolded prion and was used as a model peptide. In this study, explicit solvent molecular dynamics (MD) simulations were carried out to investigate the adsorption, folding and aggregation of PrP106–126 with different sizes (2-peptides, 4-peptides and 6-peptides) on the surface of both pure neutral POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and negatively charged POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) (3:1) lipids. MD simulation results show that PrP106–126 display strong affinity with POPC/POPG but does not interact with pure POPC. The positively charged and polar residues participating hydrogen bonding with membrane promote the adsorption of PrP106–126. The presence of POPC and POPC/POPG exert limited influence on the secondary structures of PrP106–126 and random coil structures are predominant in all simulation systems. Upon the adsorption on the POPC/POPG surface, the aggregation states of PrP106–126 have been changed and more small oligomers were observed. This work provides insights into the interactions of PrP106–126 and membranes with different compositions in atomic level, which expand our understanding the role membrane plays in the development of prion diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

6.
The lipidic beta-amino acid 2-(aminomethyl)-2-pentadecylheptadecanoic acid (1) was synthesized via the alkylation of the C(alpha)-atom of fully protected beta-alanine. Mixed large unilamellar vesicles with a diameter between 100 and 200 nm containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and 1 at a molar ratio of 9 : 1 were prepared and found to have a surface charge which is dependent on pH. At slightly acidic pH, the vesicles were positively charged, and at alkaline pH negatively charged. Dynamic light scattering, zeta potential, and cryo-transmission electron-microscopy measurements indicated that the mixed vesicles fused at pH 4-5 with negatively charged mixed vesicles composed of POPC and POPG (9.8 : 1, molar ratio), POPG being 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)].  相似文献   

7.
Accurately predicting the structural properties of phospholipid with a fully atomistic molecular model is critical for the study of pure phospholipid bilayers, mixed bilayer systems and bilayers containing proteins. The general amber force field (GAFF) has traditionally required the presence of a surface tension parameter to correctly model phospholipid bilayer properties such as area per lipid and order parameters. In this work, the GAFF partial charges for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphochiline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were re-parameterised utilising high-level ab initio calculations and the restrained electrostatic potential method. Simulations of pure POPA, POPC and POPG bilayers using the charge-modified GAFF and no applied surface tension are compared with available experimental data, the original GAFF model and the recent Lipid14 variant. The results indicate a significant improvement in the accuracy of the lipid model for reproducing experimental observables without the need for a surface tension parameter. The successful application of modifying the lipid charge distributions represents an alternative to the use of a surface tension parameter within GAFF, and highlights the importance of the partial charge calculations when modelling lipid bilayers.  相似文献   

8.
Pulmonary surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). The biological functions of SP-A and SP-D are primarily twofold, namely surfactant homeostasis and host defense. The hydrophobic surfactant proteins, SP-B and SP-C, are required for achieving the optimal surface tension reducing properties of surfactant by promoting the rapid adsorption of surfactant phospholipids along the alveolar surface. Despite the promising findings, only little is known about the extrapulmonary distribution of these proteins. Therefore, in this study, the presence of SP-A, SP-B, SP-C and SP-D in early human placenta has been investigated. First-trimester placental tissues (22–56 days) were obtained from women undergoing curettage during normal pregnancies. In parallel tissue sections, vimentin, cytokeratin-7 and CD-68 immunostainings were used for the identification of mesenchymal cells, trophoblast cells and Hofbauer cells, respectively. According to immunohistochemistry (IHC) results, SP-A, SP-B, SP-C and SP-D immunoreactivities with different staining intensities were observed in trophoblastic layers of chorionic villous tree, trophoblastic cell columns, stromal cells, Hofbauer cells, angiogenic cell cords and vascular endothelium. Fetal hematopoietic cells showed a variable staining pattern for all four surfactant proteins ranging from none to strong intensity. Western blotting of tissue extracts confirmed our IHC results. The presence of surfactant glycoproteins in early human placenta may yield a very important feature of surfactants during first trimester and enables further studies of the role of surfactants in various pregnancy complications.  相似文献   

9.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

10.
Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.  相似文献   

11.
Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfactant proteins SP-B and SP-C obtained from pig lung lavage were added either singly or combined at two concentrations. Also, non-ionic polymers polyethylene glycol and dextran and the anionic polymer hyaluronan were added either singly or in pairs with hyaluronan included. Non-ionic polymers work by different mechanisms than anionic polymers, thus the purpose of placing them together in the same surfactant mixture was to evaluate if the combination would show enhanced beneficial effects. The resulting surfactant mixtures were studied in the presence or absence of serum. A modified bubble surfactometer was used to evaluate surface activities. Mixtures that included both SP-B and SP-C plus hyaluronan and either dextran or polyethylene glycol were found to be the most resistant to inhibition by serum. These mixtures, as well as some with either SP-B or SP-C with combined polymers were as or more resistant to inactivation than native surfactant. These results suggest that improved formulations of lung surfactants are possible and may be useful in reducing some types of surfactant inactivation in treating lung injuries.  相似文献   

12.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

13.
Pulmonary surfactant promotes alveolar stability by lowering the surface tension at the air-liquid interface in the peripheral air spaces. The three surfactant proteins SP-A, SP-B, and SP-C contribute to dynamic surface properties involved during respiration. We have cloned and sequenced the complete cDNAs for ovine SP-A and SP-C and two distinct forms of ovine SP-B cDNAs. The nucleotide sequence of ovine SP-A cDNA consists of 1,901 bp and encodes a protein of 248 amino acids. Ovine SP-C cDNA contains 809 bp, predicting a protein of 190 amino acids. Ovine SP-B is encoded by two mRNA species, which differ by a 69-bp in-frame deletion in the region coding for the active airway protein. The larger SP-B cDNA comprises 1,660 bp, encoding a putative protein of 374 amino acids. With the sequences reported, a more complete analysis of surfactant regulation and the determination of their physiological function in vivo will be enabled.  相似文献   

14.
Surfactant-associated proteins: functions and structural variation   总被引:7,自引:0,他引:7  
Pulmonary surfactant is a barrier material of the lungs and has a dual role: firstly, as a true surfactant, lowering the surface tension; and secondly, participating in innate immune defence of the lung and possibly other mucosal surfaces. Surfactant is composed of approximately 90% lipids and 10% proteins. There are four surfactant-specific proteins, designated surfactant protein A (SP-A), SP-B, SP-C and SP-D. Although the sequences and post-translational modifications of SP-B and SP-C are quite conserved between mammalian species, variations exist. The hydrophilic surfactant proteins SP-A and SP-D are members of a family of collagenous carbohydrate binding proteins, known as collectins, consisting of oligomers of trimeric subunits. In view of the different roles of surfactant proteins, studies determining the structure-function relationships of surfactant proteins across the animal kingdom will be very interesting. Such studies may reveal structural elements of the proteins required for surface film dynamics as well as those required for innate immune defence. Since SP-A and SP-D are also present in extrapulmonary tissues, the hydrophobic surfactant proteins SP-B and SP-C may be the most appropriate indicators for the evolutionary origin of surfactant. SP-B is essential for air-breathing in mammals and is therefore largely conserved. Yet, because of its unique structure and its localization in the lung but not in extrapulmonary tissues, SP-C may be the most important indicator for the evolutionary origin of surfactant.  相似文献   

15.
G Beschiaschvili  J Seelig 《Biochemistry》1990,29(49):10995-11000
The binding of the cyclic somatostatin analogue SMS 201-995, (+)-D-Phe1-Cys2-Phe3-D-Trp4-(+)-Lys5-Thr6- Cys7-Thr(ol)8, to neutral and negatively charged lipids was investigated with a centrifugation assay and with electrophoretic and monolayer methods. Monolayers and bilayers were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), either in pure form or in a 75/25 (mol/mol) mixture. The expansion of monolayer films demonstrated the intercalation of the peptide between the lipid molecules with a surface area requirement of 135 A2 per peptide molecule, indicating a parallel alignment of the peptide long axis with the membrane surface. Above a limiting pressure of 32.5 mN/m for POPC and 38.5 mN/m for POPG, peptide penetration was no longer possible. The peptide binding isotherm could be measured for mixed POPC/POPG bilayers up to a peptide concentration of 0.5 mM. Due to electrostatic attraction, binding between the positively charged peptide and the negatively charged membrane surface was enhanced as compared to the binding to a neutral membrane. After correction for electrostatic effects by means of the Gouy-Chapman theory, the binding isotherm as well as the electrophoretic zeta-potential measurement could be described by the same partition equilibrium with a surface partition constant of Kp = 36 +/- 4 M-1 (at 0.1 M NaCl). About 60-70% of SMS 201-995 is probably embedded in the headgroup region with little penetration into the lipid core. The partition constant increases with increasing salt concentration or with decreasing lipid lateral pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 1-2 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase.  相似文献   

17.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

18.
A Seelig  P M Macdonald 《Biochemistry》1989,28(6):2490-2496
The binding of substance P (SP), a positively charged neurotransmitter peptide, to neutral and to negatively charged phospholipids has been investigated by means of a monolayer technique. Monolayers formed at room temperature from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or mixtures of the two, were maintained throughout the course of a binding experiment at a constant surface pressure while the monolayer surface area was monitored. Injection of SP into the aqueous subphase (154 mM NaCl, 10 mM Tris adjusted to pH 7.4) led to an expansion of the monolayer surface area that was attributed to a spontaneous insertion of SP between the lipid molecules. A quantitative evaluation of the area increase at constant pressure yielded SP insertion isotherms that showed that levels of SP insertion increased directly with the monolayer POPG content and decreased to negligible levels at surface pressures above 35 +/- 1 mN/m. If electrostatic effects were ignored, these data showed biphasic behavior in Scatchard plots. The apparent binding constants ranged, at 20 mN/m, from (3.2 +/- 0.3) X 10(4) M-1 for 100% POPG monolayers to (2.0 +/- 0.05) X 10(3) M-1 for 25% POPG/75% POPC monolayers. At 32 mN/m, a monolayer surface pressure that mimics bilayer conditions, the apparent binding constant for a 100% POPG monolayer was measured to be (1.1 +/- 0.05) X 10(3) M-1. However, for a monolayer containing only 25% charged lipids, corresponding to a natural membrane composition, K app at 32 mN/m was estimated to be at most 41 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pulmonary surfactant contains at least three unique proteins: SP-A, SP-B and SP-C. SP-B and SP-C from bovine surfactant are markedly hydrophobic and have molecular masses between 3 and 26 kDa. We identify surfactant proteins under nonreducing conditions on polyacrylamide gels with approximate molecular mass of 5, 14, 26 kDa (SP-5, 14, 26) when organic solvent-soluble material is eluted from a Sephadex LH-20 size exclusion column followed by separation on a high-performance reverse-phase chromatography system. These bands correspond to monomeric SP-C, oligomeric SP-C and oligomeric SP-B, respectively. Computer analysis (Eisenberg-hydrophobic moment) of sequences for these proteins suggests that SP-B contains surface-seeking amphiphilic segments. In contrast, SP-C resembles a more hydrophobic transmembrane anchoring peptide. Dispersions containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, palmitic acid and multimeric SP-B and SP-C duplicate the surface activity of natural surfactant when assayed in a pulsating bubble surfactometer. We speculate that oligomers of SP-B and monomers and oligomers of SP-C may act cooperatively in affecting surfactant function. An important function of SP-B and SP-C may be to affect the ordering of surfactant lipids so that rates of transport of surfactant lipids to the hypophase surface in the alveoli are enhanced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号