首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms governing the effect of polychlorinated biphenyl (PCB) toxicity on hypothalamic serotonergic function and the neuroendocrine system controlling LH secretion were investigated in Atlantic croaker (Micropogonias unulatus) exposed to the PCB mixture Aroclor 1254 (1 microg x g body weight(-1) x day(-1)) in the diet for 30 days. PCB treatment caused a decrease in hypothalamic 5-hydroxytryptamine (5-HT) concentrations and significant inhibition of hypothalamic tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT synthesis, but did not alter the activity of monoamine oxidase, the catabolic enzyme. Further, PCB treatment caused significant decreases in GnRH content in the preoptic-anterior hypothalamic area. Significant decreases in pituitary GnRH receptor concentrations and the LH response to the GnRH analogue (GnRHa) were also observed in PCB-exposed fish, possibly as a consequence of a decline in GnRH release. The possible association between impaired serotonergic and neuroendocrine functions after PCB treatment was explored using serotonergic drugs. Treatment of croaker with p-chlorophenylalanine, an irreversible TPH inhibitor, mimicked the effects of PCB on the GnRH system and the LH response to GnRHa. Bypassing the TPH-dependent hydroxylation step with the administration of 5-hydroxytryptophan restored 5-HT to control levels and prevented the deleterious effects of PCB on the neuroendocrine parameters. Moreover, slow-release GnRH implants prevented the PCB-induced decline in GnRH receptors and restored the LH response to GnRHa, suggesting that GnRH therapy can reverse PCB-induced disruption of LH secretion. These results demonstrate that TPH is one of the targets of PCB neurotoxicity and indicate that a decrease in 5-HT availability in PCB-exposed croaker results in disruption of the stimulatory 5-HT/GnRH pathway controlling LH secretion.  相似文献   

2.
Involvement of gonadal steroids in the control of gonadotropin II (GTH II) (homologous to LH) secretion was investigated in the Atlantic croaker (Micropogonias undulatus) using gonadectomy (Gx) and steroid replacement paradigms. Gonadectomy in males and females during the late gonadal recrudescence phase elicited significant increases in the gonadotropin response to stimulation by an LHRH analog (LHRHa), without altering basal GTH II secretion. Slow-release silicone elastomer implants of testosterone or estradiol significantly inhibited LHRHa-induced GTH II secretion in gonad-intact and Gx males, and in Gx females, whereas 5alpha-dihydrotestosterone, a nonaromatizable androgen, was ineffective. Pretreatment of fish with an aromatase inhibitor, 1,4, 6-androstatrien-3,17-dione, 2 days before the administration of testosterone implants, completely blocked the negative effect of testosterone on LHRHa-induced GTH II secretion in males, but only partially restored it in females. This suggests that the negative feedback of testosterone in males is primarily mediated by its conversion to estradiol at the level of the hypothalamus and/or pituitary gland, while in females the androgen may also exert a direct inhibitory effect on GTH II secretion, probably mediated via an androgen receptor. In addition, estradiol and testosterone exerted positive effects on basal and LHRHa-induced GTH II secretion during the early-recrudescence phase of the gonadal cycle. The steroids switched to a negative effect on LHRHa-induced GTH II secretion once the fish had fully developed gonads, possibly as a mechanism that prevents a precocious surge in GTH II secretion and final gamete maturation until gametogenesis is complete and the environmental conditions are appropriate for spawning.  相似文献   

3.
The salmon gonadotropin-releasing hormone (sGnRH) is considered to be involved in gonadal maturation via gonadotropin (GTH) secretion in salmonid fishes. However, there is no direct evidence for endogenous sGnRH-stimulated GTH secretion in salmonids. In this study, to clarify whether endogenous sGnRH stimulates GTH secretion, we examined the effects of the mammalian GnRH (mGnRH) antagonist [Ac-Delta(3)-Pro(1), 4FD-Phe(2), D-Trp(3,6)]-mGnRH on luteinizing hormone (LH) levels in 0-year-old masu salmon Oncorhynchus masou and sockeye salmon Oncorhynchus nerka. First, the effects of the GnRH antagonist on LH release were examined in 0-year-old precocious male masu salmon. GnRH antagonist treatment for 3 hr significantly inhibited an increase in plasma LH levels that was artificially induced by exogenous sGnRH administration, indicating that the GnRH antagonist is effective in inhibiting LH release from the pituitary. Subsequently, we examined the effect of the GnRH antagonist on LH synthesis in 0-year-old immature sockeye salmon that were pretreated with exogenous testosterone for 42 days to increase the pituitary LH contents; the testosterone treatment did not affect the plasma LH levels. GnRH antagonist treatment slightly but significantly inhibited an increase in the testosterone-stimulated pituitary LH content levels. However, no significant differences in the plasma LH levels were observed between the GnRH antagonist-treated and control groups. These results suggest that endogenous sGnRH is involved in LH secretion in salmonid fishes.  相似文献   

4.
Thomas P  Pang Y  Zhu Y  Detweiler C  Doughty K 《Steroids》2004,69(8-9):567-573
Progestin hormones exert rapid, nongenomic actions on a variety of target tissues in fish. The induction of oocyte maturation and the progestin membrane receptor (mPR) that mediates this action of progestins have been well characterized in fishes. Progestins also act on Atlantic croaker spermatozoa via an mPR to rapidly increase sperm motility. Preliminary results indicate that progestins can also exert rapid actions in the preoptic anterior hypothalamus (POAH) in this species to down-regulate gonadotropin-releasing hormone (GnRH) secretion. Recently, we reported the cloning, sequencing and characterization of a novel cDNA in a closely related species, spotted seatrout, that has the characteristics of the mPR involved in the progestin induction of oocyte maturation. Three distinct mPR subtypes, named alpha, beta, and gamma, have been identified in both fishes and mammals. The tissue distribution of the mPRalpha protein in seatrout suggests the alpha-subtype mediates progestin actions on GnRH secretion, sperm motility and oocyte maturation. However, mPRbeta antisense experiments in zebrafish oocytes suggest the beta-subtype also participates in the control of oocyte maturation in zebrafish.  相似文献   

5.
Gonadotropin-releasing hormone (GnRH), a regulator of gonadal maturation in vertebrates, is primarily secreted by neurosecretory cells of the pre-optic area (POA) in the forebrain of teleosts. GnRH-immunoreactive (GnRH-ir) cells of this area demonstrate positive correlation in number and size of soma with gonadal maturity and directly innervate the pituitary in most teleosts. Gonadal development in triploid fish remains impaired due to genetic sterility. The gonadal immaturity in triploid fish may be due to low levels of gonadotropin and sex steroids during the vitellogenic phase of reproductive cycle. However, the nature of GnRH-ir cells in triploid fish is not yet known. Triploid catfish (H. fossilis) showed significant decrease (P<0.001) in size and number of immunoreactive-GnRH cells of POA and low immunoreactivity in pituitary in comparison to their diploid full-sibs during the late pre-spawning phase of ovarian cycle. This study suggests that low activity of GnRH-cells in triploid may be due to lack of positive feedback stimulation by sex steroids and/or reduced responsiveness of sensory cells to environmental cues required for gonadal maturation in teleosts.  相似文献   

6.
7.
The neuroendocrine manifestations of puberty converge on changes in GnRH secretion. Their appraisal through the assay of GnRH-like material in 24-hour urine extracts shows an increased excretion of this material in the late prepubertal period. The most striking pubertal changes in GnRH secretion occur on a circadian and ultradian basis. In man, they can be evaluated only indirectly. The circadian variations in LH and FSH secretion characteristic of puberty may be observed in timed fractions of 24-hour urine with some delay when compared to the variations of plasma levels. Studies on the frequency of pulsatile LH secretion and during chronic intermittent administration of GnRH support the existence of an increased frequency of GnRH secretory episodes at puberty. LH response to synthetic GnRH is directly related to the frequency of stimulation by endogenous GnRH pulses and provides a very useful index of neuroendocrine maturation in patients with delayed or precocious puberty. A direct evaluation of pulsatile GnRH secretion is possible using the rat hypothalamus in vitro. In these experimental conditions, the frequency of pulsatile GnRH release increases during very early stages of sexual maturation in the male rat. GnRH itself and beta-endorphin are inhibitory regulators of GnRH secretion in vitro and may participate in the mechanisms restraining the pulse-generating machinery in the hypothalamus before puberty.  相似文献   

8.
In teleosts, gonadotropin-releasing hormone (GnRH) and gonadotropin hormone (GTH) play important roles in regulating gonadal development and maturation. In Southeast Asia, the longtooth grouper, Epinephelus bruneus, is a commercially important aquaculture fish. In this study, we cloned and characterized the longtooth grouper GnRH1 gene and cDNAs of three gonadotropin subunits (GTHα, FSHβ, LHβ). The GnRH1 gene of longtooth grouper was 4, 032 bp long, and contained four exons, 61, 151, 99, and 423 bp long. GTHα, FSHβ, and LHβ cDNAs were 509, 576, and 579 bp, respectively. Phylogenetic and Southern hybridization analyses revealed that the longtooth grouper GTH subunits were evolutionarily close to those of groupers and are one-copy genes. RT-PCR analyses showed that GTH subunit mRNAs were expressed at a higher level in the pituitary glands of immature fish than in those of mature fish, suggesting a role in gonadal maturation.  相似文献   

9.
ABSTRACT: When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning "&" symbol, while LH and progesterone (Pg) values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883-887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: - hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. - the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. - in several estrogen target tissue progesterone receptor (PgR) expression depends on previous estrogen binding to functional estrogen receptors (ER), while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: - High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge). A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. - Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic sensitivity to estrogen is diminished due to lack of local ERs, hypothalamus switches back to the low GnRH secretion rate, leading to low secretion of gonadotropins and to lutheolysis. During low GnRH secretion rates, previously downregulated pituitary GnRH receptors recover to normal levels and thus allow the next cycle.  相似文献   

10.
We investigated the nature and sites of changes in the hypothalamic-pituitary axis associated with the onset of high-frequency, high-amplitude discharges of luteinizing hormone (LH) in young bulls during the transition from the infantile to the prepubertal phase of development. Blood serum and neuroendocrine tissues from bulls killed at 1, 6, 10, 14, or 18 wk of age were evaluated. Concentrations of LH in serum from bulls 1 or 6 wk old averaged less than 0.25 ng/ml and only one episodic discharge of LH was detected for 10 bulls. At 10, 14, or 18 wk, 14 of 15 bulls had episodic discharges of LH. Concentrations of testosterone in serum were progressively higher at 10, 14, and 18 wk, but the concentration of estradiol was maximal at 6 wk. The concentrations of gonadotropin-releasing hormone (GnRH) in the anterior hypothalamus, posterior hypothalamus, or median eminence were not influenced by age. However, concentration of GnRH receptors in the anterior pituitary gland increased 314% between 6 and 10 wk and the concentration of LH increased 67%. Between 6 and 10 wk, concentrations of estradiol receptors in the anterior and posterior hypothalamus declined by 68% and 46%, but the concentration of estradiol receptors in the anterior pituitary gland increased by 103%. For most characteristics, there was no major change between 10 and 18 wk. We postulate that between 6 and 10 wk of age, there is 1) removal of an estradiol-mediated block of GnRH secretion and 2) an estradiol-mediated, and possibly GnRH-mediated, increase in pituitary GnRH receptors. Together, these changes result in greatly increased stimulation of the anterior pituitary gland by GnRH between 6 and 10 wk of age and stimulation of the discharges of LH characteristic of bulls in the early prepubertal phase of development.  相似文献   

11.
12.
Two experiments were conducted to test the working hypothesis that mean plasma concentrations of luteinizing hormone (LH) increase as a result of an increase in the frequency and amplitude of the pulsatile releases of LH in postpubertal boars after removal of gonadal steroid hormones by castration. It was further hypothesized that these changes in secretion of LH would be the result of changes in sensitivity of the pituitary to gonadotropin releasing hormone (GnRH). In Experiment 1, plasma LH was monitored in 10 postpubertal crossbred boars (13 to 14 mo old and weighing 159 +/- 6.0 kg) at 12-min intervals for 6 h before and 1 h after GnRH (375 ng/kg of body weight) on Days -1, 7, 14, 21 and 29 relative to castration. In Experiment 2, plasma LH was monitored in four castrated and five intact postpubertal boars (11 to 12 mo old and weighing 150 +/- 5.1 kg) after each of three doses of GnRH (94, 188 and 375 ng/kg) were administered to each animal. Sample collection occurred 5 wk after castration. Mean LH and frequency of pulsatile releases of LH increased as a result of castration (P<0.0001), with changes evident by Day 7 after castration. However, the amplitude of the LH pulses increased minimally after castration (P<0.10). The response to exogenous GnRH increased throughout Experiment 1 (P<0.0001), even though the amplitude of the pulsatile releases of LH (response to endogenous GnRH) did not change. Castrated animals in Experiment 2 had a greater response of LH to GnRH stimulation than intact boars (P<0.05). The dose-response curve of castrated animals was not parallel (P<0.001) to that of intact boars, and indicated that sensitivity of the pituitary to GnRH had increased in the absence of gonadal steroids. Thus, the hypotheses stated above can be accepted with the exception that castration may have a minimal effect on LH pulse amplitude. Based on the results of these experiments, we suggest that gonadal steroid hormones modulate both the size of releasable stores of LH and pituitary sensitivity to GnRH in boars.  相似文献   

13.
Although the primary control of gonadotropin secretion is by the hypothalamic GnRH and the gonadal function is controlled by the pituitary gonadotropins and prolactin, the emerging evidence suggests a vital role of the somatotropic axis, growth hormone (GH), and insulin-like growth factor-I (IGF-I) in the control of the pituitary and gonadal functions. It has been shown that GH deficiency, GH resistance, and experimental alterations in IGF-I secretion modify folliculogenesis, ovarian maturation, ovulation, and pregnancy, and in the male, GH/IGF-I plays an important role in spermatogenesis and the Leydig cell function. The primary focus of this review is to examine the role of GH/ IGF-I on the onset of puberty, fertility, pituitary, and gonadal endocrine functions. A number of studies have revealed that fertility is affected in GH-deficient dwarf and in IGF-I gene-ablated mice, possibly due to subnormal function of either the pituitary gland or the gonads. In the female GH receptor gene knockout (GHR-KO) mice, there was impairment in follicular development, ovulation rate, sexual maturation, production of and responsiveness to pheromonal signals, and the corpus luteum function. In IGF-I-deficient male GHR-KO mice, puberty is delayed, spermatogenesis is affected, and neuroendocrine-gonadal function is attenuated. Similarly, in some of the human Laron syndrome patients, puberty is delayed due to GH resistance. These data suggest that, in addition to GnRH and gonadotropins, GH/IGF-I influences the pituitary and gonadal functions in animals and humans.  相似文献   

14.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

15.
The present study investigated the effects of triiodothyronine (T3) on pituitary gonadotropin (GTH) subunits, thyroid stimulating hormone (TSH) β subunit, and growth hormone (GH) mRNA levels, as well as gonadal steroid secretion during different stages of reproduction in goldfish. Goldfish pituitary cells cultured with T3 exhibited lower tshβ mRNA levels in all reproductive stages and lower luteinising hormone β (lhβ) mRNA levels in early recrudescence, whereas gh and fshβ mRNA levels were not altered. T3 injections significantly reduced circulating oestrogen (OE2) concentrations in early and mid recrudescent male goldfish, but were without effect on the circulating level of OE2 in female fish. T3 injections also reduced circulating levels of testosterone in both male and female goldfish during the mid stage of gonadal recrudescence. In vitro culture of goldfish ovarian follicles at the late stage of gonadal recrudescence, in the presence of T3, resulted in reduced OE2 secretion; no consistent effect of T3 on testosterone secretion was observed in cultured goldfish ovarian follicles and testis. These findings support the hypothesis that T3 impairs reproduction by inhibiting production of gonadal steroids and pituitary luteinising hormone production in goldfish. Mol. Reprod. Dev. 79: 592–602, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The regulation of luteinizing hormone (LH) activity is vital to normal reproductive functioning of the female. Although gonadotrophin-releasing hormone (GnRH) has a prominent role in the regulation of LH it is now believed that other peptides are also involved. Among these peptides is oxytocin. The addition of oxytocin to cultures of pituitary cells from female rats elicited a concentration-dependent secretion of LH. This secretion was enhanced in an oestrogenised environment and was inhibited by progesterone and testosterone. Oxytocin administered to female rats at pro-oestrus advanced the endogenous LH surge that occurs on the evening of pro-oestrus. Conversely oxytocin receptor antagonist suppressed the production of the LH surge in a dose-dependent manner, indicating that endogenous oxytocin is a crucial component of LH regulation. In the human female, oxytocin administered during the late follicular phase advanced the onset of the midcycle LH surge. Oxytocin added to rat pituitary cells in vitro induced LH synthesis. Furthermore rats administered oxytocin on pro-oestrus had higher LH pituitary content following development of the LH surge than did rats administered saline. Thus oxytocin promoted synthesis and replacement in the pituitary of LH released into the circulation. Incubation of pituitary pieces with oxytocin plus GnRH induced secretion of amounts of LH greater than the sum of the amounts released by oxytocin and GnRH separately. Additionally the increased LH levels observed in the peripheral circulation of pentobarbitone-anaesthetised rats administered GnRH were enhanced if the rats received oxytocin prior to the GnRH. Thus oxytocin synergised with GnRH in stimulating LH release. Addition of diBucAMP reduced the oxytocin-mediated augmentation and dideoxyadenosine enhanced the augmentation, suggesting that oxytocin worked most efficiently in a milieu low in cAMP activity. The use of a cell immunoblot assay revealed that individual cells responded differently to oxytocin and to GnRH and that the two peptides could act on the same cell. Perifusion studies performed on hemipituitaries demonstrated that a LH response could be determined by the presence of three peptides, oxytocin, neuropeptide Y and GnRH. Hence oxytocin is potentially involved also in multiple interactions during the process of LH regulation. LH regulation is therefore apparently the result of a community of peptides acting in a co-operative network.  相似文献   

17.
神经内分泌因子调控鱼类生殖和生长的相互作用   总被引:17,自引:0,他引:17  
脊椎动物的生长与生殖活动有着密切的联系并相互作用。许多调节生长和代谢活动的内分泌因子对青春期或者性腺的发育产生影响。同样,调节生殖活动的许多激素亦同时对生长和代谢产生影响。近年来,我们和其他学者对鱼类生长和生殖的神经内分泌调节的相互作用进行了研究,主要的进展是:①在促进性腺的激素影响生长方面,发现促性腺激素释放激素(GnRH)和多巴胺都能和脑垂体生长激素细胞的特异性受体结合而刺激生长激素释放,并能  相似文献   

18.
The in vitro effects of morphine (10(-10), 10(-8), 10(-6) or 10(-5) M) or/and naltrexone (10(-6) or 10(-8) M) on LH release from male and female carp (Cyprinus carpio L.) dispersed pituitary cells (obtained from fish at the time of late gonad recrudescence) were investigated. Morphine alone at the lowest tested concentration (10(-10) M) increased LH secretion from the cells of males. On the contrary, in female cell incubations the highest concentrations of morphine (10(-6) or 10(-5) M) significantly lowered LH levels. Naltrexone alone (at both tested concentrations) had no influence on LH secretion, neither in males nor in females. However in the incubations of female cells it antagonised the influence of morphine at 10(-10) or 10(-8) M. In male cell incubations naltrexone abolished the stimulatory action of morphine at 10(-10) M. The results suggest that in the in vitro culture of carp pituitary cells LH secretion is modulated by the opioids which affect the release of this gonadotropin through the typical opioid receptors and that the mu type of these receptors is involved in this process. The effects of opioid agonist and antagonist depend on the stage of gonadal maturity and the sex of fish i.e. the actual level of sex steroids.  相似文献   

19.
20.
A sustained volley of high-frequency pulses of GnRH secretion is a fundamental step in the sequence of neuroendocrine events leading to ovulation during the breeding season of sheep. In the present study, the pattern of GnRH secretion into pituitary portal blood was examined in ewes during both the breeding and anestrous seasons, with a focus on determining whether the absence of ovulation during the nonbreeding season is associated with the lack of a sustained increase in pulsatile GnRH release. During the breeding season, separate groups (n = 5) of ovary-intact ewes were sampled during the midluteal phase of the estrous cycle and following the withdrawal of progesterone (removal of progesterone implants) to synchronize onset of the follicular phase. During the nonbreeding season, another two groups (n = 5) were sampled either in the absence of hormonal treatments or following withdrawal of progesterone. Pituitary portal and jugular blood for measurement of GnRH and LH, respectively, were sampled every 10 min for 6 h during the breeding season or for 12 h in anestrus. During the breeding season, mean frequency of episodic GnRH release was 1.4 pulses/6 h in luteal-phase ewes; frequency increased to 7.8 pulses/6 h during the follicular phase (following progesterone withdrawal). In marked contrast, GnRH pulse frequency was low (mean less than 1 pulse/6 h) in both groups of anestrous ewes (untreated and following progesterone withdrawal), but GnRH pulse amplitude exceeded that in both luteal and follicular phases of the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号