首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chronic hypoxia (CH) for 14 days on Ca2+ signaling and contraction induced by agonists in the rat main pulmonary artery (MPA) was investigated. In MPA myocytes obtained from control (normoxic) rats, endothelin (ET)-1, angiotensin II (ANG II), and ATP induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) in 85-90% of cells, whereas they disappeared in myocytes from chronically hypoxic rats together with a decrease in the percentage of responding cells. However, both the amount of mobilized Ca2+ and the sources of Ca2+ implicated in the agonist-induced response were not changed. Analysis of the transient caffeine-induced [Ca2+]i response revealed that recovery of the resting [Ca2+]i value was delayed in myocytes from chronically hypoxic rats. The maximal contraction induced by ET-1 or ANG II in MPA rings from chronically hypoxic rats was decreased by 30% compared with control values. Moreover, the D-600- and thapsigargin-resistant component of contraction was decreased by 40% in chronically hypoxic rats. These data indicate that CH alters pulmonary arterial reactivity as a consequence of an effect on both Ca2+ signaling and Ca2+ sensitivity of the contractile apparatus. A Ca2+ reuptake mechanism appears as a CH-sensitive phenomenon that may account for the main effect of CH on Ca2+ signaling.  相似文献   

2.
Sildenafil, a potent type 5 nucleotide-dependent phosphodiesterase (PDE) inhibitor, has been recently proposed as a therapeutic tool to treat or prevent pulmonary artery hypertension (PAHT). We thus studied the effect of sildenafil on both the calcium signaling of isolated pulmonary artery smooth muscle cells (PASMCs) and the reactivity of pulmonary artery (PA) obtained from chronic hypoxia (CH)-induced pulmonary hypertensive rats compared with control (normoxic) rats. CH rats were maintained in an hypobaric chamber (50.5 kPa) for 3 wk leading to full development of PAHT. Intracellular calcium concentration ([Ca2+]i) was measured in PASMCs loaded with the calcium fluorophore indo 1. Unlike in control rats, sildenafil (10-100 nM) decreased the resting [Ca2+]i value in PASMCs obtained from CH rats. In PASMCs from both control and CH rats, sildenafil concentration dependently inhibited the [Ca2+]i response induced by G-coupled membrane receptor agonists such as angiotensin II and phenylephrine but had no effect on the amplitude of the [Ca2+]i response induced by caffeine. Sildenafil (0.1 nM-1 microM) concentration dependently reduced basal PA tone that is present in CH rats and relaxed PA rings precontracted with phenylephrine in both control and CH rats. These data show that sildenafil is a potent pulmonary artery relaxant in CH rats and that it normalizes CH-induced increases in resting [Ca2+]i and basal tone. Consequently, pharmacological inhibition of sildenafil-sensitive PDE5 downregulates the Ca2+ signaling pathway involved in this model of pulmonary hypertension.  相似文献   

3.
We investigated a causal role for coronary endothelial dysfunction in development of monocrotaline (MCT)-induced pulmonary hypertension and right heart hypertrophy in rats. Significant increases in pulmonary pressure and right ventricular weight did not occur until 3 wk after 60 mg/kg MCT injection (34 +/- 4 vs. 19 +/- 2 mmHg and 37 +/- 2 vs. 25 +/- 1% septum + left ventricular weight in controls, respectively). Isolated right coronary arteries (RCA) showed significant decreases in acetylcholine-induced NO dilation in both 1-wk (33 +/- 3% with 0.3 microM; n = 5) and 3-wk (18 +/- 3%; n = 11) MCT rats compared with control rats (71 +/- 8%, n = 10). Septal coronary arteries (SCA) showed a smaller decrease in acetylcholine dilation (55 +/- 8% and 33 +/- 7%, respectively, vs. 73 +/- 8% in controls). No significant change was found in the left coronary arteries (LCA; 88 +/- 6% and 81 +/- 6%, respectively, vs. 87 +/- 3% in controls). Nitro-L-arginine methyl ester-induced vasoconstriction, an estimate of spontaneous endothelial NO-mediated dilation, was not significantly altered in MCT-treated SCA or LCA but was increased in RCA after 1 wk of MCT (-41 +/- 6%) and decreased after 3 wk (-18 +/- 3% vs. -27 +/- 3% in controls). A marked enhancement to 30 nM U-46619-induced constriction was also noted in RCA of 3-wk (-28 +/- 6% vs. -9 +/- 2% in controls) but not 1-wk (-12 +/- 7%) MCT rats. Sodium nitroprusside-induced vasodilation was not different between control and MCT rats. Together, our findings show that a selective impairment of right, but not left, coronary endothelial function is associated with and precedes development of MCT-induced pulmonary hypertension and right heart hypertrophy in rats.  相似文献   

4.
We have recently demonstrated that chronic hypoxia (CH) attenuates nitric oxide (NO)-mediated decreases in pulmonary vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca2+]i) and promotes NO-dependent VSM Ca2+ desensitization. The objective of the current study was to identify potential mechanisms by which CH interferes with regulation of [Ca2+]i by NO. We hypothesized that CH impairs NO-mediated inhibition of store-operated (capacitative) Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) in pulmonary VSM. To test this hypothesis, we examined effects of the NO donor, spermine NONOate, on SOCE resulting from depletion of intracellular Ca2+ stores with cyclopiazonic acid, and on UTP-induced ROCE in isolated, endothelium-denuded, pressurized pulmonary arteries (213 +/- 8 microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca2+]i. We found that the change in [Ca2+]i associated with SOCE and ROCE was significantly reduced in vessels from CH animals. Furthermore, spermine NONOate diminished SOCE and ROCE in vessels from control, but not CH animals. We conclude that NO-mediated inhibition of SOCE and ROCE is impaired after CH-induced pulmonary hypertension.  相似文献   

5.
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (VSM) Ca2+ responses to the NO donor spermine NONOate in UTP-constricted, isolated pressurized small pulmonary arteries from control and CH rats. Consistent with our previous findings in perfused lungs, we observed attenuated NO-dependent vasodilation following CH in endothelium-intact vessels. However, in endothelium-denuded vessels, responses to spermine NONOate were augmented in CH rats compared with controls, thus demonstrating an inhibitory influence of the endothelium on NO-dependent reactivity following CH. Whereas both the ROS scavenger tiron and the ETA receptor antagonist BQ-123 augmented NO-dependent reactivity in endothelium-intact vessels from CH rats, neither fully restored vasodilatory responses to those observed following endothelium denudation in vessels from CH rats. In contrast, the combination of tiron and BQ-123 or the nonselective ET receptor antagonist PD-145065 enhanced NO responsiveness in endothelium-intact vessels from CH rats similar to that observed following endothelium denudation. We conclude that both endothelium-derived ROS and ET-1 attenuate NO-dependent pulmonary vasodilation following CH. Furthermore, CH augments pulmonary VSM reactivity to NO.  相似文献   

6.
Myogenic tone in the pulmonary vasculature of normoxic adult animals is minimal or nonexistent. Whereas chronic hypoxia (CH) increases basal tone in pulmonary arteries, it is unclear if a portion of this elevated tone is due to development of myogenicity. Since basal arterial RhoA activity and Rho kinase (ROK) expression are augmented by CH, we hypothesized that CH elicits myogenic reactivity in pulmonary arteries through ROK-dependent vascular smooth muscle (VSM) Ca(2+) sensitization. To test this hypothesis, we assessed the contribution of ROK to basal tone and pressure-induced vasoconstriction in endothelium-disrupted pulmonary arteries [50-300 microm inner diameter (ID)] from control and CH [4 wk at 0.5 atmosphere (atm)] rats. Arteries were loaded with fura-2 AM to continuously monitor VSM intracellular Ca(2+) concentration ([Ca(2+)](i)). Basal VSM [Ca(2+)](i) was not different between groups. The ROK inhibitor, HA-1077 (100 nM to 30 microM), caused a concentration-dependent reduction of basal tone in CH arteries but had no effect in control vessels. In contrast, PKC inhibition with GF109203X (1 microM) did not alter basal tone. Furthermore, significant vasoconstriction in response to stepwise increases in intraluminal pressure (5-45 mmHg) was observed at 12, 15, 25, and 35 mmHg in arteries (50-200 microm ID) from CH rats. This myogenic reactivity was abolished by HA-1077 (10 microM) but not by GF109203X. VSM [Ca(2+)](i) was unaltered by HA-1077, GF109203X, or increases in pressure in either group. Myogenicity was not observed in larger vessels (200-300 microm ID). We conclude that CH induces myogenic tone in small pulmonary arteries through ROK-dependent myofilament Ca(2+) sensitization.  相似文献   

7.
Exercise conditioning increases rat myocardial calcium uptake   总被引:2,自引:0,他引:2  
To investigate potential mechanisms underlying the enhanced myocardial performance consequent to exercise training, the adrenergic receptors of myocardial tissue and Ca2+ uptake into sarcoplasmic reticulum-enriched fractions from exercise conditioned animals were compared with that of sedentary controls. Female Wistar rats were exercised by swimming 30 min (5 days/wk) for 12 wk. Exercise conditioning was effective in producing myocardial hypertrophy, as reflected by an increase in heart weight (1.179 +/- 0.022 vs. 1.031 +/- 0.020 g, P less than 0.001) and heart weight-to-body weight ratio (3.29 +/- 0.06 vs. 2.77 +/- 0.05 X 10(-3), P less than 0.001) but no difference in body weight. Despite the myocardial hypertrophy, neither the affinity nor the density of the alpha 1-adrenergic receptors or the beta-adrenergic receptors determined by Scatchard analysis of the ligands [3H]prazosin and [3H]dihydroalprenolol were significantly different between the two groups. The basal Ca2+ uptake into the sarcoplasmic reticulum was also similar (9.90 +/- 0.97 vs. 9.04 +/- 0.75 nmol/mg protein/min), but the addition of calmodulin produced a significantly greater increment in Ca2+ uptake into sarcoplasmic reticulum from the exercised-conditioned animals (1.90 +/- 0.23 vs. 1.21 +/- 0.19 nmol/mg protein/min, P less than 0.03). The adenosine triphosphatase (ATPase) activities of the sarcoplasmic reticulum-enriched fractions of the two groups were similar. We conclude that exercise conditioning produces an enhancement of calmodulin-mediated calcium uptake that is independent of any effect on Ca2+-ATPase.  相似文献   

8.
In the lung, chronic hypoxia (CH) causes pulmonary arterial smooth muscle cell (PASMC) depolarization, elevated endothelin-1 (ET-1), and vasoconstriction. We determined whether, during CH, depolarization-driven activation of L-type Ca(2+) channels contributes to 1) maintenance of resting intracellular Ca(2+) concentration ([Ca(2+)](i)), 2) increased [Ca(2+)](i) in response to ET-1 (10(-8) M), and 3) ET-1-induced contraction. Using indo 1 microfluorescence, we determined that resting [Ca(2+)](i) in PASMCs from intrapulmonary arteries of rats exposed to 10% O(2) for 21 days was 293.9 +/- 25.2 nM (vs. 153.6 +/- 28.7 nM in normoxia). Resting [Ca(2+)](i) was decreased after extracellular Ca(2+) removal but not with nifedipine (10(-6) M), an L-type Ca(2+) channel antagonist. After CH, the ET-1-induced increase in [Ca(2+)](i) was reduced and was abolished after extracellular Ca(2+) removal or nifedipine. Removal of extracellular Ca(2+) reduced ET-1-induced tension; however, nifedipine had only a slight effect. These data indicate that maintenance of resting [Ca(2+)](i) in PASMCs from chronically hypoxic rats does not require activation of L-type Ca(2+) channels and suggest that ET-1-induced contraction occurs by a mechanism primarily independent of changes in [Ca(2+)](i).  相似文献   

9.
Horiba M  Muto T  Ueda N  Opthof T  Miwa K  Hojo M  Lee JK  Kamiya K  Kodama I  Yasui K 《Life sciences》2008,82(11-12):554-560
T-type Ca2+ channels (TCCs) are involved in cardiac cell growth and proliferation in cultured cardiomyocytes. Underlying molecular mechanisms are not well understood. In this study, we investigated the role of TCCs in signal transduction in cardiac hypertrophy compared with L-type Ca2+ channels (LCCs). Cardiomyocytes dissociated from neonatal mouse ventricles were cultured until stabilization. Cell hypertrophy was induced by reapplication of 1% fatal bovine serum (FBS) following a period (24 h) of FBS depletion. Cell surface area increased from 862+/-73 microm2 to 2153+/-131 microm2 by FBS stimulation in control (250+/-1.8%). T-type Ca2+ current (I(CaT)) was inhibited dose-dependently by kurtoxin (KT) and efonidipine (ED) with IC50 0.07 microM and 3.2 microM, respectively in whole-cell voltage clamp. On the other hand, 1 microM KT which inhibits I(CaT) over 90% did not effect on L-type Ca2+ current (I(CaL)). 10 microM ED had the ability of I(CaL) blockade as well as that of I(CaT) blockade. 3 microM nisoldipine (ND) suppressed I(CaL) by over 80%. The increase in cell surface area following reapplication of FBS as observed in control (250+/-1.8%) was significantly reduced in the presence of 1 microM KT (216+/-1.2%) and virtually abolished in the presence of 10 microM ED (97+/-0.8%) and 3 microM ND (80+/-1.1%). Hypertrophy was associated with an increase in BNP mRNA of 316+/-3.6% in control and this increase was reduced as well in the presence of 1 microM KT (254+/-1.8%) and almost abolished in the presence of 10 microM ED (116+/-1.1%) and 3 muM ND (93+/-0.8%). Immunolabeling showed that translocation of nuclear factor of activated T cells (NFAT3) into the nucleus in response to FBS stimulation was markedly inhibited by either KT or ED as well as ND. Calcineurin phosphatase activity was upregulated 2.2-fold by FBS, but KT, ED and ND decreased this upregulation (1.7-fold, 0.8-fold, and 0.7-fold with KT, ED and ND respectively). These results suggest that blockade of Ca2+ entry into cardiomyocytes via TCCs may block pathophysiological signaling pathways leading to hypertrophy as well as via LCCs. The mechanism may be the inhibition of calcineurin-mediated NFAT3 activation resulting in prevention of its translocation into the nucleus.  相似文献   

10.
In a previous work, we demonstrated that, in normotensive rats, AFL induced a marked hypotension due to a decrease in total peripheral resistances (TPR), partially secondary to the release of NO by the endothelium. NO did not, however, account for the total vasodilation produced by AFL in these rats. The aim of this study was to determine the involvement of the intracellular calcium mobilization in the vasorelaxant action induced by AFL in the rat aorta. In aorta of normotensive rats AFL (10, 20, 40 and 80 microg/ml) inhibited the sustained contractions induced by KCl (80 and 30 mM) and phenylephrine (Phe, 1 microM) with similar IC50 values (54 +/- 6, 52 +/- 4 and 65 +/- 4 microg/ml, respectively). The relaxing response induced by AFL against Phe-induced contractions was modified significantly by the endothelium removal (IC50 = 132 +/- 23 and 65 +/- 4 microg/ml, endothelium removed and intact endothelium aortic rings, respectively). Nevertheless, removal of the endothelium did not significantly change IC50 values when KCl (30 and 80 mM) was used as the contractile agent. The inhibitory effect induced by AFL on high (64.5 mM) K+-induced contraction was potentiated slightly (p < 0.05) by the decrease (from 2.5 to 0.3 mM, Ca2+) and attenuated by the increase (from 2.5 to 7.5 mM Ca2+) in the external [Ca2+]. In addition, in aortas from normotensive rats, AFL antagonized transient contractions induced in Ca2+-free media induced by 1 microM noradrenaline in a concentration-dependent manner, but not those induced by 20 mM caffeine. It is suggested that the remaining vasodilator effect of AFL in normotensive rats is probably due to an inhibition of Ca2+ influx and/or inhibition of intracellular Ca2+ mobilization from the noradrenaline-sensitive stores.  相似文献   

11.
Fung ML  Li HY  Wong TM 《Life sciences》2002,70(15):1801-1809
We have shown that the contractile, cytosolic calcium ([Ca2+]i) and cyclic AMP (cAMP) responses to beta-adrenoceptor stimulation are attenuated in ventricular myocytes of chronically hypoxic (CH) rats. The aim of this study was to examine the effect of forskolin on the L-type Ca2+ current in CH hypertrophied ventricular myocytes. Patch-clamp recording of the L-type Ca2+ current was measured in right ventricular myocytes of normoxic control and CH rats exposed to 10% inspired oxygen for 4 weeks. The breadth, but not the length, of CH myocytes was significantly greater than that of the control group. Activation of beta-adrenoceptor with isoproterenol (0.1 microM) increased the peak Ca2+ current by 83% in the normoxic control but the increase of peak Ca2+ current was not significant in the CH myocytes. Forskolin (0.1 - 1 microM), an activator of adenylyl cyclase, increased the peak Ca2+ current by 49% - 102% in the normoxic controls but it did not cause significant change of the peak Ca2+ current in CH myocytes. These results suggest an absence of forskolin-induced activation of Ca2+ current in hypertrophied ventricular myocytes during chronic hypoxia. The failure of activation of the Ca2+ current is consistent with the idea that adenylyl cyclase function is down-regulated in CH hypertrophied myocytes.  相似文献   

12.
Intact Madison (M) rats have greater pulmonary pressor responses to acute hypoxia than Hilltop (H) rats. We tested the hypothesis that the difference in pressor response is intrinsic to pulmonary arteries and that endothelium contributes to the difference. Pulmonary arteries precontracted with phenylephrine (10(-7) M) from M rats had greater constrictor responses [hypoxic pulmonary vasoconstriction (HPV)] to acute hypoxia (0% O(2)) than those from H rats: 473 +/- 30 vs. 394 +/- 29 mg (P < 0.05). Removal of the endothelium or inhibition of nitric oxide (NO) synthase by N(omega)-nitro-L-arginine (L-NA, 10(-3) M) significantly blunted HPV in both strains. Inhibition of cyclooxygenase by meclofenamate (10(-5) M) or blockade of endothelin type A and B receptors by BQ-610 (10(-5) M) + BQ-788 (10(-5) M), respectively, had no effect on HPV. Constrictor responses to phenylephrine, endothelin-1, and prostaglandin F(2alpha) were similar in pulmonary arteries from both strains. The relaxation response to ACh, an NO synthase stimulator, was significantly greater in M than in H rats (80 +/- 3 vs. 62 +/- 4%, P < 0.01), but there was no difference in response to sodium nitroprusside, an NO donor. L-NA potentiated phenylephrine-induced contraction to a greater extent in pulmonary arteries from M than from H rats. These findings indicate that at least part of the strain-related difference in acute HPV is attributable to differences in endothelial function, possibly related to differences in NO production.  相似文献   

13.
Endothelin-1 (ET-1), a potent vasoconstrictor, is believed to contribute to the pathogenesis of hypoxic pulmonary hypertension. Previously we demonstrated that contraction induced by ET-1 in intrapulmonary arteries (IPA) from chronically hypoxic (CH) rats occurred independently of changes in intracellular Ca2+ concentration ([Ca2+]i), suggesting that ET-1 increased Ca2+ sensitivity. The mechanisms underlying this effect are unclear but could involve the activation of myosin light chain kinase, Rho kinase, PKC, or tyrosine kinases (TKs), including those from the Src family. In this study, we examined the effect of pharmacological inhibitors of these kinases on maximum tension generated by IPA from CH rats (10% O2 for 21 days) in response to ET-1. Experiments were conducted in the presence of nifedipine, an L-type Ca2+ channel blocker, to isolate the component of contraction that occurred without a change in [Ca2+]i. The mean change in tension caused by ET-1 (10(-8) M) expressed as a percent of the maximum response to KCl was 184.0+/-39.0%. This response was markedly inhibited by the Rho kinase inhibitors Y-27632 and HA-1077 and the TK inhibitors genistein, tyrphostin A23, and PP2. In contrast, staurosporine and GF-109203X, inhibitors of PKC, had no significant inhibitory effect on the tension generated in response to ET-1. We conclude that the component of ET-1-induced contraction that occurs without a change in [Ca2+]i in IPA from CH rats requires activation of Rho kinase and TKs, but not PKC.  相似文献   

14.
The purpose of this study was to evaluate the reversibility of right ventricular (RV) remodelling after pulmonary artery hypertension (PAHT) secondary to 3 wk of hypobaric hypoxia. A group of 10 adult male Wistar rats were studied and were the following: control normoxic (C), after 3 wk of chronic hypoxia (CH), and after 3 wk of exposure to hypoxia followed by 3 wk of normoxia recovery (N-RE). Mean pulmonary artery pressure was 11 +/- 2 mmHg in the C group, 35 +/- 2 mmHg in the CH group, and 14 +/- 3 mmHg in the N-RE group. RV function was assessed by echocardiography. In the CH group, the pulmonary flow measured in Doppler mode depicted a midsystolic notch and a decrease of the pulmonary acceleration time compared with control [17 +/- 1 vs. 34 +/- 1 ms (n = 10), respectively; P < 0.05]. RV thickening measured in M-mode was apparent in the CH group compared with the control group [2.84 +/- 0.40 vs. 1.73 +/- 0.26 mm (n = 10), P < 0.05]. In the N-RE group, the RV wall was significantly thinner compared with the CH group [1.56 +/- 0.08 vs. 1.73 +/- 0.26 mm (n = 10), P < 0.05]. The calculated RV diameter shortness fraction was not different between the CH group and C group (34 +/- 4.2% vs. 36 +/- 2.8%) but decreased in the N-RE group [20 +/- 2.4% (n = 10), P < 0.01]. The E-to-A wave ratio on the tricuspid Doppler inflow was significantly lower in the CH group and N-RE group compared with the C group [0.70 +/- 0.8 and 0.72 +/- 0.1 vs. 0.88 +/- 0.2 (n = 10), respectively; P < 0.05]. In the isolated perfused heart using the Langendorff method, RV compliance was increased in the CH group and decreased in the N-RE group. In the N-RE group, fibrous bands with metaplasia were observed on histological sections of the RV free wall. We conclude that PAHT induces nonreversible RV dysfunction with dysplasia.  相似文献   

15.
Acid-sensing ion channel 1 (ASIC1) is a newly characterized contributor to store-operated Ca(2+) entry (SOCE) in pulmonary vascular smooth muscle (VSM). Since SOCE is implicated in elevated basal VSM intracellular Ca(2+) concentration ([Ca(2+)](i)) and augmented vasoconstriction in chronic hypoxia (CH)-induced pulmonary hypertension, we hypothesized that ASIC1 contributes to these responses. To test this hypothesis, we examined effects of the specific pharmacologic ASIC1a inhibitor, psalmotoxin 1 (PcTX1), on vasoconstrictor and vessel wall [Ca(2+)](i) responses to UTP and KCl (depolarizing stimulus) in fura-2-loaded, pressurized small pulmonary arteries from control and CH (4 wk at 0.5 atm) Wistar rats. PcTX1 had no effect on basal vessel wall [Ca(2+)](i), but attenuated vasoconstriction and increases in vessel wall [Ca(2+)](i) to UTP in arteries from control and CH rats; normalizing responses between groups. In contrast, responses to the depolarizing stimulus, KCl, were unaffected by CH exposure or PcTX1. Upon examining potential Ca(2+) influx mechanisms, we found that PcTX1 prevented augmented SOCE following CH. Exposure to CH resulted in a significant increase in pulmonary arterial ASIC1 protein. This study supports a novel role of ASIC1 in elevated receptor-stimulated vasoconstriction following CH which is likely mediated through increased ASIC1 expression and SOCE.  相似文献   

16.
Recent studies from our laboratory indicate that pulmonary vasodilatory responses to exogenous nitric oxide (NO) are attenuated following chronic hypoxia (CH) and that this NO-dependent vasodilation is mediated by cGMP. Similarly, we have demonstrated that CH attenuates vasodilatory responses to the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP). We hypothesized that attenuated pulmonary vasodilation to 8-BrcGMP following CH is mediated by decreased protein kinase G-1 (PKG-1) expression/activity. Therefore, we examined vasodilatory responses to 8-BrcGMP (1 microM) in isolated, saline-perfused lungs from control and CH (4 wk at barometric pressure of 380 mmHg) rats in the presence of the competitive PKG inhibitor Rp-beta-phenyl-1, N2-etheno-8-bromoguanosine 3',5'-cyclic monophosphorothionate (30 microM) or the highly specific PKG inhibitor KT-5823 (10 microM). PKG-1 expression and activity were determined in whole lung homogenates from each group, and vascular PKG-1 levels were assessed by quantitative immunohistochemistry. PKG inhibition with either Rp-8-Br-PET-cGMPS or KT-5823 diminished vasodilatory responses to 8-BrcGMP in lungs from both control and CH rats, thus indicating a role for PKG in mediating reactivity to 8-BrcGMP in each group. However, in contrast to our hypothesis, PKG-1 levels were approximately twofold greater in lungs from CH rats vs. controls, and furthermore, this upregulation was localized to the vasculature. This correlates with an increase in PKG activity following CH. We conclude that PKG-1 is involved in 8-BrcGMP-mediated vasodilation; however, attenuated pulmonary vasodilation following CH is not associated with decreased expression/activity of PKG-1.  相似文献   

17.
Membrane vesicles capable of energized Ca2+ pumping have been reconstituted from cardiac sarcoplasmic reticulum (SR). Cardiac SR was solubilized with Triton X-100 in a detergent to protein weight ratio of 0.8, and membranous vesicles were reconstituted by removal of detergent with Bio-Beads SM-2 (a neutral porous styrene-divinylbenzene copolymer). The reconstituted vesicles exhibited ATP-dependent oxalate-facilitated Ca2+ accumulation with rates and efficiency comparable to the best reconstituted skeletal muscle preparation (Ca2+-loading rate = 1.65 +/- 0.31 mumol mg-1 min-1, Ca2+-activated ATPase activity = 2.39 +/- 0.25 mumol mg-1 min-1, efficiency (Ca2+/ATP) = 0.69 +/- 0.09). Phospholamban in the reconstituted vesicles was phosphorylated with added catalytic subunit of cAMP-dependent protein kinase to almost the same extent as that in original vesicles. However, phosphorylation of phospholamban had no effect on the Ca2+ accumulation of the reconstituted vesicles. This is to be contrasted with a decrease in the half-maximal concentration of Ca2+ for Ca2+ accumulation (KCa) in the original vesicles from 1.35 +/- 0.08 microM to 0.75 +/- 0.12 microM by cAMP-dependent phosphorylation of phospholamban. On the other hand KCa for the reconstituted vesicles was about 0.5 microM and remained unchanged by phosphorylation, indicating that the Ca2+ pump in the reconstituted vesicles is already fully activated. These results suggest that in normal cardiac SR, phospholamban in the dephosphorylated state acts as a suppressor of the Ca2+ pump and that phosphorylation of phospholamban serves to reverse the suppression.  相似文献   

18.
Recent evidence supports a prominent role for Rho kinase (ROK)-mediated pulmonary vasoconstriction in the development and maintenance of chronic hypoxia (CH)-induced pulmonary hypertension. Endothelin (ET)-1 contributes to the pulmonary hypertensive response to CH, and recent studies by our laboratory and others indicate that pulmonary vascular reactivity following CH is largely independent of changes in vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca(2+)](i)). In addition, CH increases generation of reactive oxygen species (ROS) in pulmonary arteries, which may underlie the shift toward ROK-dependent Ca(2+) sensitization. Therefore, we hypothesized that ROS-dependent RhoA/ROK signaling mediates ET-1-induced Ca(2+) sensitization in pulmonary VSM following CH. To test this hypothesis, we determined the effect of pharmacological inhibitors of ROK, myosin light chain kinase (MLCK), tyrosine kinase (TK), and PKC on ET-1-induced vasoconstriction in endothelium-denuded, Ca(2+)-permeabilized small pulmonary arteries from control and CH (4 wk at 0.5 atm) rats. Further experiments examined ET-1-mediated, ROK-dependent phosphorylation of the regulatory subunit of myosin light chain phosphatase (MLCP), MYPT1. Finally, we measured ET-1-induced ROS generation in dihydroethidium-loaded small pulmonary arteries and investigated the role of ROS in mediating ET-1-induced, RhoA/ROK-dependent Ca(2+) sensitization using the superoxide anion scavenger, tiron. We found that CH increases ET-1-induced Ca(2+) sensitization that is sensitive to inhibition of ROK and MLCK, but not PKC or TK, and correlates with ROK-dependent MYPT1(Thr696) phosphorylation. Furthermore, tiron inhibited basal and ET-1-stimulated ROS generation, RhoA activation, and VSM Ca(2+) sensitization following CH. We conclude that CH augments ET-1-induced Ca(2+) sensitization through ROS-dependent activation of RhoA/ROK signaling in pulmonary VSM.  相似文献   

19.
Pulmonary vascular smooth muscle (VSM) sensitivity to nitric oxide (NO) is enhanced in pulmonary arteries from rats exposed to chronic hypoxia (CH) compared with controls. Furthermore, in contrast to control arteries, relaxation to NO following CH is not reliant on a decrease in VSM intracellular free calcium ([Ca(2+)](i)). We hypothesized that enhanced NO-dependent pulmonary vasodilation following CH is a function of VSM myofilament Ca(2+) desensitization via inhibition of the RhoA/Rho kinase (ROK) pathway. To test this hypothesis, we compared the ability of the NO donor, spermine NONOate, to reverse VSM tone generated by UTP, the ROK agonist sphingosylphosphorylcholine, or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate in Ca(2+)-permeabilized, endothelium-denuded pulmonary arteries (150- to 300-microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca(2+)](i). We further examined effects of NO on levels of GTP-bound RhoA and ROK membrane translocation as indexes of enzyme activity in arteries from each group. We found that spermine NONOate reversed Y-27632-sensitive Ca(2+) sensitization and inhibited both RhoA and ROK activity in vessels from CH rats but not control animals. In contrast, spermine NONOate was without effect on PKC-mediated vasoconstriction in either group. We conclude that CH mediates a shift in NO signaling to promote pulmonary VSM Ca(2+) desensitization through inhibition of RhoA/ROK.  相似文献   

20.
Chronic obstructive pulmonary diseases, as well as prolonged residence at high altitude, can result in generalized airway hypoxia, eliciting an increase in pulmonary vascular resistance. We hypothesized that a portion of the elevated pulmonary vascular resistance following chronic hypoxia (CH) is due to the development of myogenic tone. Isolated, pressurized small pulmonary arteries from control (barometric pressure congruent with 630 Torr) and CH (4 wk, barometric pressure = 380 Torr) rats were loaded with fura 2-AM and perfused with warm (37 degrees C), aerated (21% O(2)-6% CO(2)-balance N(2)) physiological saline solution. Vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)) and diameter responses to increasing intraluminal pressure were determined. Diameter and VSM cell [Ca(2+)](i) responses to KCl were also determined. In a separate set of experiments, VSM cell membrane potential responses to increasing luminal pressure were determined in arteries from control and CH rats. VSM cell membrane potential in arteries from CH animals was depolarized relative to control at each pressure step. VSM cells from both groups exhibited a further depolarization in response to step increases in intraluminal pressure. However, arteries from both control and CH rats distended passively to increasing intraluminal pressure, and VSM cell [Ca(2+)](i) was not affected. KCl elicited a dose-dependent vasoconstriction that was nearly identical between control and CH groups. Whereas KCl administration resulted in a dose-dependent increase in VSM cell [Ca(2+)](i) in arteries taken from control animals, this stimulus elicited only a slight increase in VSM cell [Ca(2+)](i) in arteries from CH animals. We conclude that the pulmonary circulation of the rat does not demonstrate pressure-induced vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号