首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the contribution of reactive oxygen species (ROS), reactive nitrogen species (RNS) and the 2 integrin CD18 to neutrophil-mediated myotube injury. Human myotubes were cultured with human neutrophils in the presence or absence of inhibitors directed against ROS, RNS, and CD18. Muscle injury was assessed by a 51Cr release assay. The inclusion of superoxide dismutase (50–500 U/ml) in the culture medium did not affect myotube injury. A significant protective effect was provided by including catalase (600–2400 U/ml), deferoxamine (1–2 mM), or anti-CD18 antibody (10 g/ml) in the culture medium. S-Ethylisothiourea (500–1000 M), an inhibitor of nitric oxide synthase (NOS), significantly increased myotube injury and reduced nitric oxide (NO) in cultures consisting of only myotubes. In conclusion, neutrophil-mediated skeletal muscle injury appears to be largely dependent on CD18-mediated neutrophil adhesion and iron-dependent hydroxyl radical production. In addition, skeletal muscle NOS activity may protect skeletal muscle against the injury caused by neutrophils.This project was supported by The University of Toledo DeArce Memorial Fund and the National Institutes of Health AR47599-01  相似文献   

2.
3.
The effects of competitive inhibitors of transglutaminase on the formation of myotubes by the fusion of myoblasts in vitro has been investigated. Myotube formation was inhibited when myoblasts from 11-day-old chick embryos were cultured in vitro in the presence of 10 mM histamine or 0.2 mM dansyl cadaverine. The inhibitions observed were reversed when the treated cells were subsequently cultured in normal medium. Glycine methyl ester also inhibited myotube formation but sarcosine methyl ester, which is not a competitive inhibitor of transglutaminase, had little if any inhibitory action. The formation of myotubes was not inhibited by cultivation in normal medium adjusted to pH 8.0-8.1, indicating that the observed effects of histamine and of dansyl cadaverine were not mediated by a lysosomotropic effect. Inhibition of myotube formation in the presence of histamine was accompanied by the production of abnormal multinucleated cells, indicating that myoblast fusion occurred in the treated cultures but that the fused cells failed to elongate into normal myotubes. Transglutaminase activity has been found in cell-free lysates of embryonic chick myoblasts and it is concluded that a transglutaminase enzyme, activated by an increase in the concentration of intracellular Ca2+, plays an important role in stabilising the cytoskeletal network of developing myotubes.  相似文献   

4.
We report the conditions to obtain primary suspension cultures using embryonic skeletal muscle from 12-day chick breast muscle. Further, the conditions are described to obtain scanning electron micrographs of whole cells and transmission electron micrographs of sections of plastic-embedded cells on microcarriers. A positively charged hydrated dextran microcarrier, Cytodex I (Pharmacia), provided support for the cells; the myogenic stages of proliferation, myoblast alignment and fusion to form myotubes coincided temporally with replicate cultures grown on gelatin-coated plastic dishes. Microcarrier-grown cells, including non-muscle cells, had microvilli, lamellipodia, bleb, and other surface modifications but no ruffling membranes. Myoblasts and myotubes on beads had fewer microvilli compared to homologous cells grown in the static culture medium of plastic dishes. Myoblasts aligned laterally during fusion, starting at 48 h. Myotube cytodifferentiation proceeded to myofibril formation by day 4 of microcarrier culture. The sarcomeres of aligned myofibrils had normal banding with an hexagonal lattice of thick and thin myofilaments in the A-bands. Caveolae intracellulares and sarcoplasmic reticulum were evident. Scaling-up to larger volumes promises to provide a cost-effective way to obtain a large harvest of cultured skeletal muscle which may prove especially useful for studies of minor constituents.  相似文献   

5.
The basal lamina protein, laminin, has been shown to promote migration and proliferation of cultured skeletal myoblasts, resulting in increased myotube formation. However, skeletal myotubes adhere poorly to a laminin substrate, and long-term cultures of skeletal myotubes on laminin have not been achieved. We have found that cultured satellite cells from bupivacaine-damaged rat skeletal muscle actively proliferate and differentiate on a diluted Matrigel substrate composed of laminin, type IV collagen, heparan sulfate proteoglycan, and entactin. Myotubes cultured on diluted Matrigel are contractile and have never been observed to detach from the culture dish; rather, myotubes generally atrophy after 2-3 weeks in culture. Antibodies directed against the various protein components of Matrigel were used to determine the role of each component in enhancing muscle differentiation. Anti-laminin impaired satellite cell adhesion, whereas antibodies against either type IV collagen or heparan sulfate proteoglycan had no effect. Anti-entactin did not inhibit attachment, proliferation, or fusion of cultured satellite cells; however, myotubes exposed to anti-entactin failed to adhere to the culture dish after spontaneous myotube contractions began. We conclude that entactin is responsible for long-term maintenance and maturation of contractile skeletal myotubes on a diluted Matrigel substrate. This is the first study to assign a biological function for entactin in myogenesis.  相似文献   

6.
Passive stretch (10–12%) of tissue-cultured avian skeletal myotubes in serum-containing medium stimulates myotube growth in a manner analogous to hormonal stimulation of adult muscle. The resulting increase in myotube length is accompanied by marked reduction in the number of surface microvilli seen by scanning electron microscopy. We investigated the possible involvement of exogenous growth factors in the transduction of stretch-induced alterations in cell shape into the concurring biochemical changes that are associated with cell growth. We show that the acute stimulation of myotube amino acid transport and protein synthesis by stretch are independent of serum growth factors in the culture medium by evidence obtained from serum dose-response experiments. The myotubes synthesize and secrete high molecular weight factors into their culture medium, which regulates myotube amino acid transport and protein synthesis. Stretch of the myotubes did not alter the appearance of these factors in the culture medium. The initial growth-related biochemical alterations induced by myotube stretch in vitro thus depend only on events intrinsic to the cells. However, subsequent stretch-induced growth of the myotubes occurs only in serum-containing medium. There are both serum-independent and serum-dependent steps in the transduction of the stretch stimulus into myotube growth.  相似文献   

7.
A method was developed to suppress growth of fibroblasts in chicken and mouse primary skeletal muscle cell cultures. Addition of hydroxyurea to the culture medium at appropriate time and concentrations suppressed the proliferation of fibroblasts whereas leaving myotubes grow and differentiate. The most favorable time for the addition was soon after myotube formation. The optimal concentrations for our purpose ranged from 0.5 to 1.0 mM. In the presence of hydroxyurea at these concentrations, myotubes grew larger and well differentiated, whereas fibroblasts remained in the suppressed state. In chicken myotubes cultured with hydroxyurea, cross-striations, spontaneous twitching and myosin heavy chain appeared as in myotubes without hydroxyurea. In mouse myotubes cultured with hydroxyurea, myosin heavy chain and dystrophin appeared, as in control myotubes.  相似文献   

8.
Interleukin-15 (IL-15) is a novel anabolic factor for skeletal muscle which inhibits muscle wasting associated with cancer (cachexia) in a rat model. To develop a cell culture system in which the mechanism of the anabolic action of IL-15 on skeletal muscle could be examined, the mouse C2 skeletal myogenic cell line was transduced with a retroviral expression vector for IL-15 and compared to sister cells transduced with a control vector. Overexpression of IL-15 induced fivefold higher levels of sarcomeric myosin heavy chain and alpha-actin accumulation in differentiated myotubes. Secreted factors from IL-15-overexpressing myogenic cells, but not from control cells, induced increased myofibrillar protein accumulation in cocultured control myotubes. IL-15 overexpression induced a hypertrophic myotube morphology similar to that described for cultured myotubes which overexpressed the well-characterized anabolic factor insulin-like growth factor-I (IGF-I). However, in contrast to IGF-I, the hypertrophic action of IL-15 on skeletal myogenic cells did not involve stimulation of skeletal myoblast proliferation or differentiation. IL-15 induced myotube hypertrophy at both low and high IGF-I concentrations. Furthermore, in contrast to IGF-I, which stimulated only protein synthesis under these culture conditions, IL-15 both stimulated protein synthesis and inhibited protein degradation in cultured skeletal myotubes. These findings indicate that IL-15 action on skeletal myogenic cells is distinct from that of IGF-I. Due to the ability of IGF-I to stimulate cell division and its association with several forms of cancer, controversy exists concerning the advisability of treating cachexia or age-associated muscle wasting with IGF-I. Administration of IL-15 or modulation of the IL-15 signaling pathway may represent an alternative strategy for maintaining skeletal muscle mass under these conditions.  相似文献   

9.
Cells of the clonal myogenic line L6 were examined electron microscopically at successive stages of growth. L6 cells are developmentally similar to those of chick and rat primary skeletal muscle cultures and skeletal muscle in vivo, with respect to myofibrillogenesis and sarcomere organization. However, the sarcoplasmic reticulum and T systems of L6 myotubes are not as well differentiated as those of primary muscle cultures and adult skeletal muscle. Finally, L6 myotubes show precocious sarcomere differentiation when cultured in medium containing 25 mM potassium.  相似文献   

10.
Satellite cells, isolated from marcaine-damaged rat skeletal muscle, differentiate in culture to form contracting, cross-striated myotubes. Addition of 20 microM hemin (ferriprotoporphyrin IX chloride) to the culture medium resulted in increases in the number, size, and alignment of myotubes; in the number of myotubes that exhibited cross-striations; and in the strength and frequency of myotube contractions. Hemin increased satellite cell fusion by 27%, but decreased cell proliferative rate by 30%. Hemin increased the specific activity of creatine kinase (CK), a sensitive indicator of muscle differentiation, by 157%. Separation of CK isoenzymes by agarose gel electrophoresis showed that hemin increased only the muscle-specific CK isoenzymes (MM-CK and MB-CK). Thus, hemin seems to duplicate some of the effects of innervation on cultured myotubes by increasing contraction frequency and strength, appearance of cross-striations, and muscle-specific isoenzymes. In contrast, 3-amino-1,2,4-triazole, an inhibitor of heme biosynthesis, decreased the number of cross-striated myotubes, the strength and frequency of myotube contractions, and CK activity. These inhibitory effects were reversed by hemin. Collectively, these results demonstrate a physiologically significant role for heme in myotube maturation.  相似文献   

11.
12.
Myogenic satellite cells were isolated from the pectoralis major muscle of young growing tom turkeys. These cells were capable of proliferating and forming large multinucleated myotubes in vitro. Of 36 media-sera combinations evaluated, McCoy's 5A medium containing 15% chicken serum (CS) promoted the greatest level of proliferation and subsequent myotube formation when cells were induced to differentiate (P less than 0.05). Myotube formation was maximized following exposure of cultures to Dulbecco's Modified Eagle's Medium (DMEM) containing 1% horse serum (HS; DMEM-1% HS) for 4 days. Satellite cells grown under these conditions generally resulted in cultures containing greater than 90% fused nuclei. Cells plated in the presence of DMEM-10% HS resulted in greater attachment and larger cultures (and consequently a greater fused nuclei number) when transferred to growth media than similarly grown cultures plated in McCoy's 5A medium-10% CS, regardless of substrata tested (P less than 0.05). The greatest proliferation and myotube formation was seen in cultures grown in gelatin-coated wells. Proliferation was maximized in McCoy's 5A medium containing 18% CS, although this was not significantly different than the proliferation with media containing 15% CS (P greater than 0.05). Our results (1) document that the postnatal myogenic satellite cell can be isolated from the turkey in sufficient quantities for biological studies and (2) identify culture conditions which optimize proliferation and differentiation of these cells in vitro.  相似文献   

13.
Increased myostatin expression, resulting in muscle loss, has been associated with hyperammonemia in mammalian models of cirrhosis. However, there is evidence that hyperammonemia in avian embryos results in a reduction of myostatin expression, suggesting a proliferative myogenic environment. The present in vitro study examines species differences in myotube and liver cell response to ammonia using avian and murine-derived cells. Primary myoblasts and liver cells were isolated from embryonic day 15 and 17 chick embryos to be compared with mouse myoblasts (C2C12) and liver (AML12) cells. Cells were exposed to varying concentrations of ammonium acetate (AA; 2.5, 5, or 10 mM) to determine the effects of ammonia on the cells. Relative expression of myostatin mRNA, determined by quantitative real-time PCR, was significantly increased in AA (10 mM) treated C2C12 myotubes compared to both ages of chick embryonic myotube cultures after 48 h (P < 0.02). Western blot analysis of myostatin protein confirmed an increase in myostatin expression in AA-treated C2C12 myotubes compared to the sodium acetate (SA) controls, while myostatin expression was decreased in the chick embryonic myotube cultures when treated with AA. Myotube diameter was significantly decreased in AA-treated C2C12 myotubes compared to controls, while avian myotube diameter increased with AA treatment (P < 0.001). There were no significant differences between avian and murine liver cell viability, assessed using 2′, 7′- bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein, acetoxymethyl ester, when treated with AA. However, after 24 h, AA-treated avian myotubes showed a significant increase in cell viability compared to the C2C12 myotubes (P < 0.05). Overall, it appears that there is a positive myogenic response to hyperammonemia in avian myotubes compared to murine myotubes, which supports a proliferative myogenic environment.  相似文献   

14.
Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (P<0.05) in simvastatin-treated (5 μM) vs control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.  相似文献   

15.
N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre- and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAP-s and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first 3 weeks of postnatal development, while N-RAP-c mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing alpha-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.  相似文献   

16.
Myogenic cells were isolated from adult rat skeletal muscles and cultured in vitro. Cell proliferation was analyzed between days 1 and 14. The cell cycle phases were determined by examining Feulgen-stained cultures with a cell image processor. The nuclei were automatically analyzed by calculating 18 parameters relating to the texture and densitometry of chromatin and the shape of each nucleus. Cell cycle phases were characterized (Moustafa and Brugal, 1984). The recognition methods made it possible to analyse the nuclei of the myogenic cell populations which were either involved in each phase of the mitotic cycle, or left out of the cycle after fusion into myotubes.After 3 hr of culture 10% of the cell population was involved in the cell cycle. In the presence of foetal calf serum, this percentage increased until day 3 after plating. At that time, the DNA content of 28.2% of the cell population was higher than 3C, whereas it is 2C in G1 or G0 nuclei; image analysis showed that 42% of these cells were in S or G2 phase. From day 4, the proliferation rate gradually slowed down until day 8. After day 8, when numerous myotubes differentiated, the percentage of S and G2 phase cells had diminished to between 3 and 8%. The percentage of nuclei in G0 increased when the first myotubes differentiated around day 5. Myotube nuclei were largely in G0. When horse serum was added to the culture medium on day 4 to enhance myotube differentiation, significant cell proliferation was observed before cell fusion.These methods of analysis give the first daily pattern of myogenic cell proliferation and fusion in a cell population isolated from adult muscles.  相似文献   

17.
To identify the function of triadin in skeletal muscle, adenovirus-mediated overexpression of Trisk 95 or Trisk 51, the two major skeletal muscle isoforms, was induced in rat skeletal muscle primary cultures, and the physiological behavior of the modified cells was analyzed. Overexpression did not modify the expression level of their protein partners ryanodine receptor, dihydropyridine receptor, and the other triadin. Caffeine-induced calcium release was also unaffected by triadin overexpression. Nevertheless, in the absence of extracellular calcium, depolarization-induced calcium release was almost abolished in Trisk 95 overexpressing myotubes (T95 myotubes), and not modified in Trisk 51 overexpressing myotubes (T51 myotubes). This was not because of a modification of dihydropyridine receptors, as depolarization in presence of external calcium still induced a calcium release, and the activation curve of dihydropyridine receptor was unchanged, in both T95 and T51 myotubes. The calcium release complex was also maintained in T95 myotubes as Trisk 95, ryanodine receptor, dihydropyridine receptor, and Trisk 51 were still co-localized. The effect of Trisk 95 overexpression on depolarization-induced calcium release was reversed by a simultaneous infection with an antisense Trisk 95 adenovirus, indicating the specificity of this effect. Thus, the level of Trisk 95 and not Trisk 51 is important on regulating the calcium release complex, and an excess of this protein can lead to an inhibition of the physiological function of the complex.  相似文献   

18.
19.
The tumor promoter 12–0-tetradecanoylphorbol-13-acetate (TPA) dramatically modifies the differentiative program of myotubes, developed in culture from chick embryo skeletal myogenic cells. In fact TPA selectively decreases the expression of differentiative parameters with a lag of 8–10 h from its administration to the cultures. We have tested whether the reported effect of TPA depends on the synthesis of specific products during the lag phase of TPA action. The data presented indicate that inhibition of protein synthesis by the use of cycloheximide prevents the appearance of TPA induced inhibition of the expression of differentiative products, such as creatine phosphokinase (CPK) activity and acetylcholine receptors (AChR). Following removal of cycloheximide and reinitiation of normal protein synthesis, the TPA induced inhibitory effect on CPK and AChR appears after a delay of about the same length as the time lag of TPA action. Our results indicate that inhibition of protein synthesis during the lag phase of TPA action prevents the effect of this tumor promoter on myotube differentiative parameters, and suggest that the expression of differentiative traits in cultured myotubes is affected by TPA via a regulatory step implying protein synthesis.  相似文献   

20.
In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号