首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a non-isotonic environment, cells can shrink or swell and return to their normal shape by activating ion transport pathways. Changes in intracellular pH (pHi) after osmotic stress have been identified in several cells. In order to study the mechanisms that regulate cytosolic pH of rat mast cells in a hypertonic medium, we used the pH sensitive dye, BCECF. Under these hypertonic conditions, pHi undergoes an alkalinization following an initial acidification. The alkalinization is mediated by a Na+/H+ exchanger, since it is inhibited by amiloride and lack of extracellular sodium. Under these conditions, the alkalinization is increased with the PKC activators, TPA and OAG, and partially blocked with trifluoperazine, an unspecific protein kinase C (PKC) and Ca2+ calmodulin-dependent protein kinases (Ca2+/CaM K) inhibitor. There is also an anion exchanger, blocked with DIDS but not activated by PKC, that participates in the observed alkalinization. However, Na+/H+ exchanger is the main mechanism involved in the alkalinization of pHi of mast cells in a hyperosmotic environment.  相似文献   

2.
3.
Cell shrinkage is one of the earliest events during apoptosis. Cell shrinkage also occurs upon hypertonic stress, and previous work has shown that hypertonicity-induced cation channels (HICCs) underlie a highly efficient mechanism of recovery from cell shrinkage, called the regulatory volume increase (RVI), in many cell types. Here, the effects of HICC activation on staurosporine-induced apoptotic volume decrease (AVD) and apoptosis were studied in HeLa cells by means of electronic cell sizing and whole-cell patch-clamp recording. It was found that hypertonic stress reduces staurosporine-induced AVD and cell death (associated with caspase-3/7 activation and DNA fragmentation), and that this effect was actually due to activation of the HICC. On the other hand, staurosporine was found to significantly reduce osmotic HICC activation. It is concluded that AVD and RVI reflect two fundamentally distinct functional modes in terms of the activity and role of the HICC, in a shrunken cell. Our results also demonstrate, for the first time, the ability of the HICC to rescue cells from the process of programmed cell death.  相似文献   

4.
Abstract

Aquaporin (AQP) 1 and AQP 4 are members of the aquaporin water channel family that play an important role in reabsorption of water from the renal tubular fluid to concentrate urine. Studies of renal AQPs have been performed in human, rodents, sheep, dogs and horses. We studied nephron segment-specific expression of AQP 1 and AQP 4 using immunohistochemical staining on paraffin sections of bovine kidneys. AQP 1 was moderately expressed in endothelium of the cortical capillary network, vasa recta, and glomerular capillaries. AQP 4 was moderately expressed only in cytoplasm of epithelial cells in proximal tubules. We concluded that AQP 1 and AQP 4 in the bovine kidney showed some differences from other species in renal trans-epithelial water transport.  相似文献   

5.
Aquaporin 5 (AQP5), the major water channel expressed in alveolar, tracheal, and upper bronchial epithelium, is significantly down-regulated during pulmonary inflammation and edema. The mechanisms that underlie this decrease in AQP5 levels are therefore of considerable interest. Here we show that AQP5 expression in cultured lung epithelial cells is decreased 2-fold at the mRNA level and 10-fold at the protein level by the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha). Treatment of murine lung epithelial cells (MLE-12) with TNF-alpha results in a concentration- and time-dependent decrease in AQP5 mRNA and protein expression. Activation of the p55 TNF-alpha receptor (TNFR1) with an agonist antibody is sufficient to cause decreased AQP5 expression, demonstrating that the TNF-alpha effect is mediated through TNFR1. Inhibition of nuclear factor kappaB (NF-kappaB) translocation to the nucleus blocks the effect of TNF-alpha on AQP5 expression, indicating that activation of NF-kappaB is required, whereas inhibition of extracellular signal-regulated or p38 mitogen-activated protein kinases showed no effect. These data show that TNF-alpha decreases AQP5 mRNA and protein expression and that the molecular pathway for this effect involves TNFR1 and activated NF-kappaB. The ability of inflammatory cytokines to decrease aquaporin expression may help explain the connection between inflammation and edema.  相似文献   

6.
Ogura K  Tai T 《Glycobiology》2001,11(9):751-758
We previously reported that GalCer expression factor 1 (GEF-1), a rat homologue of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), induced GalCer expression, morphological changes, and cell growth inhibition in COS-7 cells. In this study, we describe the characterization of GEF-1 in MDCK cells. Overexpression of GEF-1 in MDCK (MDCK/GEF-1) cells showed GalCer-derived sulfatide expression as well as dramatic morphological changes, but not cell growth suppression. The enzyme activity and the mRNA level of UDP-galactose:ceramide galactosyltransferase (CGT) increased significantly in MDCK/GEF-1 cells compared with control cells. GEF-1 molecule is composed of four domains; a zinc-finger (Z), a proline-rich (P), a coiled-coil (C), and a proline/glutamine-rich (Q) domain. MDCK cells transfected with various GEF-1 deletion mutants were examined for morphology and for glycolipid expression. MDCK cells transfected with Z-domain deletion mutant (MDCK/PCQ) and those with both Z- and P-domains deletion mutant (MDCK/CQ) were similar to those with a wild-type GEF-1 (MDCK/ZPCQ) in shape, exhibiting fibroblast-like cells, whereas those with the other deletion mutants showed no morphological changes, exhibiting typical epithelial-like cells. On the other hand, MDCK/ZPCQ, MDCK/PCQ, MDCK/CQ, and MDCK/Q cells expressed sulfatide, whereas those with the other deletion mutants that did not include the Q-domain showed neither GalCer nor sulfatide expression. Thus, the correlation between fibroblast-like cells in shape and the glycolipid expression was good in these deletion mutants except MDCK/Q cells, which showed epithelial-like cells, but expressed sulfatide. The glycolipid expression paralleled CGT mRNA levels. Taking these results together, it is suggested that only the Q-domain may be essential for the role of GEF-1 in inducing CGT mRNA, whereas the Q-domain together with the C-domain may be required for the induction of morphological changes in MDCK cells.  相似文献   

7.
We previously reported that galactosylceramide expression factor-1 (GEF-1), a rat homolog of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs/Hgs), induces galactosylceramide and/or sulfatide expression and morphological changes in epithelial cells. Here, we show that GEF-1 induces myogenesis in MDCK and C3H10T1/2 cells. GEF-1 overexpression in MDCK cells (MDCK/GEF-1) appeared to promote trans-differentiation to myoblasts that expressed MyoD and myosin heavy chain (MHC). MDCK/GEF-1 cells also expressed several DNA-binding proteins (MyoD and MEF-2) that are essential for myogenesis. These results suggest that GEF-1 induces MDCK cells to enter an early stage of myogenesis. Subsequently, we tested whether GEF-1 could induce myogenesis in C3H10T1/2 mouse fibroblasts, which have the potential to differentiate into myoblast-like cells. Indeed, GEF-1 induced morphological changes that were consistent with myoblast-like cells, and both MyoD and MHC were expressed. Our results suggest that GEF-1 may induce MDCK and C3H10T1/2 cells to trans-differentiate into myoblast-like cells.  相似文献   

8.
9.
Cytomatrix synthesis in MDCK epithelial cells   总被引:1,自引:0,他引:1  
Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak (J. Biol. Chem., 256:4863-4870, 1981), was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form. The results suggest that metabolic coupling between individual cellular filament systems is not strict. The data are, however, consistent with models that predict that assembly of a subcellular structure influences the turnover of its component proteins.  相似文献   

10.
11.
Alterations in the structural organization of MDCK cells under the effect of arginine-vasopressin (AVP) have been studied using electron and fluorescent microscopy methods. Electron microscopy has confirmed that the MDCK cells in the monolayer have structurally different apical and basolateral surfaces separated by well-formed zones of intercellular contacts. AVP has been proven to bind specifically to receptors on the basolateral cell surface and be internalized from the cell surface after 10–15 min. AVP produces fragmentation of the Golgi apparatus and swelling in its cisternae due to the appearance of an osmotic water flow across the monolayer. The significant depolymerization of the cell’s actin cytoskeleton has been revealed under effect of AVP or forskolin (an adenylyl cyclase activator). The functional role and regulatory mechanisms of the described structural alterations are discussed.  相似文献   

12.
By using immunohistochemical techniques applied to confocal microscopy, the presence of aquaporin 3 water channel in the epidermis of Triturus italicus (Amphibia, Urodela) has been shown. We analysed the expression of aquaporin 3 (AQP3) during the larval, pre-metamorphic and adult phases; we also showed the localization of the water-channel protein AQP3 in free-swimming conditions and during aestivation in parallel with histological analysis of the skin, focusing on the possible relationship between protein expression and terrestrial habitats. Our results indicate that aquaporin is produced as the epidermis modifies during the functional maturation phase starting at the climax. Moreover, our data suggest an increase in enzyme expression in aestivating newts emphasizing the putative functional importance of differential expression related to a distinct phase of the biological cycle.  相似文献   

13.
Abstract By exposing the cells of Dictyostelium discoideum to a high concentration (120 mM) of KCl, several species of proteins (188 kilodalton (kDa), 95 kDa, and 71 kDa) are specifically phosphory-lated. This phosphorylation is induced irrespective of the time of starvation of cells by KCl, but not by cAMP, and inhibited by cycloheximide. The 32P-labeled phosphoryl groups of 95- and 71-kDa proteins disappear by chasing during the subsequent differentiation step in a liquid shake culture. The majority of the 188- and 95-kDa proteins exist in the plasma membrane fraction.  相似文献   

14.
MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.  相似文献   

15.
Overexpression of aconstitutively active mutant of the mitogen-activated protein kinasekinase MEK1 (caMEK1) in epithelial Madin-Darby canine kidney (MDCK)-C7cells disrupts morphogenesis, induces an invasive phenotype, and isassociated with a reduced rate of cell proliferation. The role ofcell-cell adhesion molecules and cell cycle proteins in theseprocesses, however, has not been investigated. We now report loss ofE-cadherin expression as well as a marked reduction of - and-catenin expression in transdifferentiated MDCK-C7 cells stablyexpressing caMEK1 (C7caMEK1) compared with epithelial mock-transfectedMDCK-C7 (C7Mock1) cells. At least part of the remaining -catenin wascoimmunoprecipitated with -catenin, whereas no E-cadherin wasdetected in -catenin immunoprecipitates. In both cell types, theproteasome-specific protease inhibitors N-acetyl-Leu-Leu-norleucinal (ALLN) and lactacystin led to atime-dependent accumulation of -catenin, including the appearance ofhigh-molecular-weight -catenin species. Quiescent as well asserum-stimulated C7caMEK1 cells showed a higher cyclin D expressionthan epithelial C7Mock1 cells. The MEK inhibitor U-0126 inhibitedextracellular signal-regulated kinase phosphorylation and cyclin Dexpression in C7caMEK1 cells and almost abolished their already reducedcell proliferation rate. We conclude that the transdifferentiated andinvasive phenotype of C7caMEK1 cells is associated with a diminishedexpression of proteins involved in cell-cell adhesion. Although-catenin expression is reduced, C7caMEK1 cells show a higherexpression of U-0126-sensitive cyclin D protein.

  相似文献   

16.
17.
18.
Enhanced osmotic water permeability has been observed in Xenopus oocytes expressing cystic fibrosis transmembrane conductance regulator (CFTR) protein. Subsequent studies have shown that CFTR activates an endogenous water permeability in oocytes, but that CFTR itself is not the water channel. Here, we show CFTR-dependent activation of endogenous water permeability in normal but not in cystic fibrosis human airway epithelial cells. Cell volume was measured by novel confocal x-z laser scanning microscopy. Glycerol uptake and antisense studies suggest CFTR-dependent regulation of aquaporin 3 (AQP3) water channels in airway epithelial cells. Regulatory interaction was confirmed by coexpression of CFTR and AQP3 cloned from human airways in Xenopus oocytes and of CFTR and rat AQP3 in Chinese hamster ovary cells. These findings indicate that CFTR is a regulator of AQP3 in airway epithelial cells.  相似文献   

19.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

20.
In non-polarized cell culture models, influenza virus has been shown to enter host cells via multiple endocytic pathways, including classical clathrin-mediated endocytic routes (CME), clathrin- and caveolae-independent routes and macropinocytosis. However, little is known about the entry route of influenza virus in differentiated epithelia, in vivo site of infection for influenza virus. Here, we show that in polarized Madin–Darby canine kidney type II (MDCK II) cells, influenza virus has a specific utilization of the clathrin-mediated endocytic pathway and requires Eps15 for host cell entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号