首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.  相似文献   

2.
Tumor necrosis factor-alpha (TNF) is implicated as an important proinflammatory cytokine in asthma. We evaluated mice deficient in TNF receptor 1 (TNFR1) and TNFR2 [TNFR(-/-) mice] in a murine model of allergic inflammation and found that TNFR(-/-) mice had comparable or accentuated responses compared with wild-type [TNFR(+/+)] mice. The responses were consistent among multiple end points. Airway responsiveness after methacholine challenge and bronchoalveolar lavage (BAL) fluid leukocyte and eosinophil numbers in TNFR(-/-) mice were equivalent or greater than those observed in TNFR(+/+) mice. Likewise, serum and BAL fluid IgE; lung interleukin (IL)-2, IL-4, and IL-5 levels; and lung histological lesion scores were comparable or greater in TNFR(-/-) mice compared with those in TNFR(+/+) mice. TNFR(+/+) mice chronically treated with anti-murine TNF antibody had BAL fluid leukocyte numbers and lung lesion scores comparable to control antibody-treated mice. These results suggest that, by itself, TNF does not have a critical proinflammatory role in the development of allergic inflammation in this mouse model and that the production of other cytokines associated with allergic disease may compensate for the loss of TNF bioactivity in the TNFR(-/-) mouse.  相似文献   

3.
Asthma and obesity are growing epidemics in the world. It is well established that obesity worsens the asthma outcomes. High-fat diet-induced obesity in mice exacerbates the pulmonary eosinophilic inflammation. We have used wild-type (WT) and ob/ob mice to further explore the mechanisms by which obesity aggravates the pulmonary eosinophilic inflammation. The eosinophil (EO) number in bronchoalveolar lavage (BAL) fluid, lung tissue, blood, and bone marrow were evaluated at 24, 48, and 72 h after ovalbumin (OVA) challenge in sensitized mice. The basal EO number (phosphate-buffered saline (PBS)-instilled mice) in lung tissue was about 3.5-fold greater in ob/ob compared with WT mice. OVA challenge in ob/ob mice promoted an EO accumulation into the lung that was accompanied by a lower emigration to airways lumen (BAL fluid) in comparison with WT mice. OVA challenge also markedly elevated the number of mature and immature EO in bone marrow of ob/ob mice at 24 h compared with WT group. Blood EO at 48 h was markedly greater in ob/ob mice. Tumor necrosis factor (TNF)-α and interleukin (IL)-10 levels in BAL fluid were significantly higher in ob/ob mice, whereas no changes for IL-5 and eotaxin were found. The IL-6 levels were significantly lower in ob/ob mice. In conclusion, OVA challenge in ob/ob obese mice potentiates eosinophilopoiesis and promotes an accumulation of EO into the lung tissue, delaying their transit to airways lumen. The longer EO remain into the lung tissue is likely to contribute, at least in part, to the asthma worsened by obesity.  相似文献   

4.
Chronic airway inflammation is a key feature of bronchial asthma. Leukotrienes are potent inflammatory mediators that play a role in the pathophysiology of asthma, and their levels are elevated in the airways in response to allergen challenge. We examined the anti-inflammatory effect of thymoquinone (TQ), the active principle in the volatile oil of Nigella sativa seeds, on leukotriene (LT) biosynthesis in a mouse model of allergic asthma. Mice sensitized and challenged with ovalbumin (OVA) antigen had an increased amounts of leukotriene B4 and C4, Th2 cytokines, and eosinophils in bronchoalveolar lavage (BAL) fluid. In addition, there was also a marked increase in lung tissue eosinophilia and goblet cell numbers. Administration of TQ before OVA challenge inhibited 5-lipoxygenase, the main enzyme in leukotriene biosynthesis, expression by lung cells and significantly reduced the levels of LTB4 and LTC4. This was accompanied by a marked decrease in Th2 cytokines and BAL fluid and lung tissue eosinophilia, all of which are characteristics of airway inflammation. These results demonstrate the anti-inflammatory effect of TQ in experimental asthma.  相似文献   

5.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

6.
Asthma is characterized by oxidative stress and inflammation of the airways. Although proinflammatory lipids are involved in asthma, therapies targeting them remain lacking. Ac-DWFKAFYDKVAEKFKEAFNH(2) (4F) is an apolipoprotein (apo)A-I mimetic that has been shown to preferentially bind oxidized lipids and improve HDL function. The objective of the present study was to determine the effects of 4F on oxidative stress, inflammation, and airway resistance in an established murine model of asthma. We show here that ovalbumin (OVA)-sensitization increased airway hyperresponsiveness, eosinophil recruitment, and collagen deposition in lungs of C57BL/6J mice by a mechanism that could be reduced by 4F. OVA sensitization induced marked increases in transforming growth factor (TGF)β-1, fibroblast specific protein (FSP)-1, anti-T15 autoantibody staining, and modest increases in 4-hydroxynonenal (4-HNE) Michael's adducts in lungs of OVA-sensitized mice. 4F decreased TGFβ-1, FSP-1, anti-T15 autoantibody, and 4-HNE adducts in the lungs of the OVA-sensitized mice. Eosinophil peroxidase (EPO) activity in bronchial alveolar lavage fluid (BALF), peripheral eosinophil counts, total IgE, and proinflammatory HDL (p-HDL) were all increased in OVA-sensitized mice. 4F decreased BALF EPO activity, eosinophil counts, total IgE, and p-HDL in these mice. These data indicate that 4F reduces pulmonary inflammation and airway resistance in an experimental murine model of asthma by decreasing oxidative stress.  相似文献   

7.
A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.  相似文献   

8.
Adiponectin is a cytokine with both proinflammatory and anti-inflammatory properties that is expressed in epithelial cells in the airway in chronic obstructive pulmonary disease-emphysema (COPD-E). To determine whether adiponectin modulates levels of lung inflammation in tobacco smoke-induced COPD-E, we used a mouse model of COPD-E in which either adiponectin-deficient or wild-type (WT) mice were exposed to tobacco smoke for 6 mo. Outcomes associated with tobacco smoke-induced COPD-E were quantitated including lung inflammation [bronchoalveolar lavage (BAL) and total and differential cell count], lung mediators of inflammation (cytokines and chemokines), air space enlargement (i.e., linear intercept), and lung function (tissue elastance) in the different groups of mice. Whereas exposure of WT mice to tobacco smoke for 6 mo induced significant lung inflammation (increased total BAL cells, neutrophils, and macrophages), adiponectin-deficient mice had minimal BAL inflammation when exposed to tobacco smoke for 6 mo. In addition, whereas chronic tobacco-exposed WT mice had significantly increased levels of lung mediators of inflammation [i.e., TNF-α, keratinocyte-derived chemokine (KC), and adiponectin] as well as significantly increased air space enlargement (increased linear intercept) and decreased tissue elastance, exposure of adiponectin-deficient mice to chronic tobacco smoke resulted in no further increase in lung mediators, air space enlargement, or tissue elastance. In vitro studies demonstrated that BAL macrophages derived from adiponectin-deficient mice incubated in media containing tobacco smoke expressed minimal TNF-α or KC compared with BAL macrophages from WT mice. These studies suggest that adiponectin plays an important proinflammatory role in tobacco smoke-induced COPD-E.  相似文献   

9.
Sphingosine 1-phosphate (S1P) produced by sphingosine kinase (SPHK) is implicated in acute immunoresponses, however, mechanisms of SPHK/S1P signaling in the pathogenesis of bronchial asthma are poorly understood. In this study, we hypothesized that SPHK inhibition could ameliorate lung inflammation in ovalbumin (OVA)-challenged mouse lungs. Six- to eight-week-old C57BL/6J mice were sensitized and exposed to OVA for 3 consecutive days. Twenty-four hours later, mice lungs and bronchoalveolar lavage (BAL) fluid were analyzed. For an inhibitory effect, either of the two different SPHK inhibitors, N,N-dimethylsphingosine (DMS) or SPHK inhibitor [SK-I; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole], was nebulized for 30 min before OVA inhalation. OVA inhalation caused S1P release into BAL fluid and high expression of SPHK1 around bronchial epithelial walls and inflammatory areas. DMS or SK-I inhalation resulted in a decrease in S1P amounts in BAL fluid to basal levels, accompanied by decreased eosinophil infiltration and peroxidase activity. The extent of inhibition caused by DMS inhalation was higher than that caused by SK-I. Like T helper 2 (Th2) cytokine release, OVA inhalation-induced increase in eotaxin expression was significantly suppressed by DMS pretreatment both at protein level in BAL fluid and at mRNA level in lung homogenates. Moreover, bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were improved by SPHK inhibitors. These data suggest that the inhibition of SPHK affected acute eosinophilic inflammation induced in antigen-challenged mouse model and that targeting SPHK may provide a novel therapeutic tool to treat bronchial asthma.  相似文献   

10.
AimsFudosteine is a cysteine derivative that is used as an expectorant in chronic bronchial inflammatory disorders. It has been shown to decrease the number of goblet cells in an animal model. This study examined the effects of fudosteine on airway inflammation and remodeling in a murine model of chronic asthma.Main methodsBALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), and subsequently challenged with nebulized ovalbumin three days a week for four weeks. Seventy-two hours after the fourth challenge, airway hyperresponsiveness (AHR) and the cell composition of bronchoalveolar lavage (BAL) fluid were assessed. Fudosteine was administered orally at 10 mg/kg or 100 mg/kg body weight from the first to the fourth challenge.Key findingsWe investigated the effects of fudosteine on the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenges. The administration of fudosteine during the challenge with ovalbumin prevented the development of airway hyperresponsiveness and accumulation of lymphocytes in the airways. Eotaxin, IL-4, and TGF-β levels and the relative intensity of matrix metalloproteinase-2 and matrix metalloproteinase-9 (MMP-2 and MMP-9) in BAL fluid were reduced by the fudosteine treatment; however, the number of eosinophils in BAL fluid and serum IgE levels did not change. The expression of TGF-β, the development of goblet cell hyperplasia, subepithelial collagenization, and basement membrane thickening were also reduced by the fudosteine treatment.SignificanceThese results indicate that fudosteine is effective in reducing airway hyperresponsiveness, airway inflammation, and airway remodeling in a murine model of chronic asthma.  相似文献   

11.
Leukotriene E4 (LTE4) that plays a key role in airway inflammation is expressed on platelets and eosinophils. We investigated whether blocking of the P2Y12 receptor can suppress eosinophilic inflammation in a mouse model of asthma because platelets and eosinophils share this receptor to be activated. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA), followed by OVA nebulization. On each challenge day, clopidogrel, a P2Y12 antagonist was administered 30 min. before each challenge. Forty‐eight hours after the last OVA challenge, mice were assessed for airway hyperresponsiveness (AHR), cell composition and cytokine levels, including chemokine ligand 5 (CCL5), in bronchoalveolar lavage (BAL) fluid. EOL cells were treated with LTE4, with or without clopidogrel treatment, and intracellular and extracellular eosinophil cationic protein (ECP) expressions were measured to find the inhibiting function of P2Y12 antagonist on eosinophilic activation. The levels of P2Y12 expression were increased markedly in the lung homogenates of OVA‐sensitized and ‐challenged mice after platelet depletion. Administration of clopidogrel decreased AHR and the number of airway inflammatory cells, including eosinophils, in BAL fluid following OVA challenge. These results were associated with decreased levels of Th2 cytokines and CCL5. Histological examination showed that inflammatory cells as well as mucus‐containing goblet cells were reduced in clopidogrel‐administered mice compared to vehicle‐treated mice. Clopidogrel inhibited extracellular ECP secretion after LTE4 stimulation in EOL‐1 cells. Clopidogrel could prevent development of AHR and airway inflammation in a mouse model of asthma. P2Y12 can be a novel therapeutic target to the suppression of eosinophils in asthma.  相似文献   

12.
Uteroglobin-related protein 1 (UGRP1) is a secretory protein, highly expressed in epithelial cells of airways. Although an involvement of UGRP1 in the pathogenesis of asthma has been suggested, its function in airways remains unclear. In the present study, a relationship between airway inflammation, UGRP1 expression, and interleukin-9 (IL-9), an asthma candidate gene, was evaluated by using a murine model of allergic bronchial asthma. A severe airway inflammation accompanied by airway eosinophilia and elevation of IL-9 in bronchoalveolar lavage (BAL) fluids was observed after ovalbumin (OVA) challenge to OVA-sensitized mice. In this animal model of airway inflammation, lung Ugrp1 mRNA expression was greatly decreased compared with control mice. A significant inverse correlation between lung Ugrp1 mRNA levels and IL-9 levels in BAL fluid was demonstrated by regression analysis (r = 0.616, P = 0.023). Immunohistochemical analysis revealed a distinct localization of UGRP1 in airway epithelial cells of control mice, whereas UGRP1 staining was patchy and faint in inflamed airways. Intranasal administration of IL-9 to naive mice decreased the level of Ugrp1 expression in lungs. These findings suggest that UGRP1 is downregulated in inflamed airways, such as allergic asthmatics, and IL-9 might be an important mediator for modulating UGRP1 expression.  相似文献   

13.
TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis   总被引:6,自引:0,他引:6  
Transient adenovirus-mediated gene transfer of IL-1beta (AdIL-1beta), a proinflammatory cytokine, induces marked inflammation and severe and progressive fibrosis in rat lungs. This is associated with an increase in TGF-beta1 concentration in bronchoalveolar lavage (BAL) fluid. TGF-beta1 is a key cytokine in the process of fibrogenesis, using intracellular signaling pathways involving Smad2 and Smad3. In this study we investigate whether inflammation induced by IL-1beta is able to independently induce lung fibrosis in mice deficient in the Smad3 gene. Seven days after AdIL-1beta administration, similar levels of IL-1beta transgene are seen in BAL in both wild-type (WT) and knockout (KO) mice, and BAL cell profiles demonstrated a similar marked neutrophilic inflammation. Phospho-Smad2 staining was positive in areas of inflammation in both WT and KO mice at day 7. By day 35 after transient IL-1beta expression, WT mice showed marked fibrosis in peribronchial areas, quantified by picrosirius red staining and morphometry. However, there was no evidence of fibrosis or collagen accumulation in IL-1beta-treated KO mice, and peribronchial areas were not different from KO mice treated with the control adenovector. TGF-beta1 and phospho-Smad2 were strongly positive at day 35 in fibrotic areas observed in WT mice, but no such staining was detectable in KO mice. The IL-1beta-induced chronic fibrotic response in mouse lungs is dependent on Smad3. KO and WT animals demonstrated a similar inflammatory response to overexpression of IL-1beta indicating that inflammation must link to the Smad3 pathway, likely through TGF-beta, to induce progressive fibrosis.  相似文献   

14.
The kinetics of airway inflammation and remodeling processes following ovalbumin aerosol challenge in sensitized BALB/c mice was studied. Mice were exposed to either single or five ovalbumin challenges over 5 days. In both protocols, time-dependent increases in bronchoalveolar lavage (BAL) cellular fibronectin, neutrophils and eosinophils were observed. The kinetics of these events were similar in both protocols; however, the magnitude of the response was much greater following repeated challenges. BAL protein levels and lymphocyte numbers were increased only following repeated challenges, whereas interleukin (IL)-5 and IL-4 were increased in both protocols. Histological analysis revealed a time-dependent increase in epithelial cell proliferation and in mucus-producing epithelial cells. Proliferation of alveolar cells was observed only following repeated challenges. Airway hyperreactivity was observed in both protocols but was much greater following repeated challenges. Pretreatment with dexamethasone fully inhibited the inflammatory response and airway hyperreactivity but only partially inhibited the remodeling process. These data suggest that glucocorticoids, although potent anti-inflammatory agents, may not be potent in reducing the lung remodeling process associated with asthma.  相似文献   

15.
Resistin-like molecule alpha (Retnla), also known as ‘Found in inflammatory zone 1’, is a secreted protein that has been found in bronchoalveolar lavage (BAL) fluid of ovalbumin (OVA)-induced asthmatic mice and plays a role as a regulator of T helper (Th)2-driven inflammation. However, the role of Retnla in the progress of Th2-driven airway inflammation is not yet clear. To better understand the function of Retnla in Th2-driven airway inflammation, we generated Retnla-overexpressing (Retnla-Tg) mice. Retnla-Tg mice showed increased expression of Retnla protein in BAL fluid and airway epithelial cells. Retnla overexpression itself did not induce any alteration in lung histology or lung function compared to non-Tg controls. However, OVA-sensitized/challenged Retnla-Tg mice had decreased numbers of cells in BAL and inflammatory cells accumulating in the lung. They also showed a reduction in mucus production in the airway epithelium, concomitant with a decreased Muc5ac level. These results were accompanied by reduced levels of Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13, with no effect on levels of OVA-specific immunoglobulin isotypes. Furthermore, phosphorylation of ERK was markedly reduced in the lungs of OVA-challenged Retnla-Tg mice. Taken together, these results indicates that Retnla protects against Th2-mediated inflammation in an experimental mouse model of asthma, suggesting that therapeutic approaches to enhance the production of Retnla or Retnla-like molecules could be valuable for preventing allergic lung inflammation.  相似文献   

16.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

17.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

18.
Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.  相似文献   

19.
Carbon monoxide (CO) in expired gas has been shown to be elevated with asthma; however, its function is not known, and there is some potential that it may serve a bronchoprotective role to decrease airway hyperresponsiveness (AHR). Thus the ability of CO to reverse methacholine (MCh)-induced bronchoconstriction was evaluated in C57BL/6 (C57) and A/J mice with and without airway inflammation produced by ovalbumin (OVA). Acutely administered CO (1% in air, 10 min) reduced MCh-driven increases in lung resistance in OVA-challenged C57 mice by an average of 50% (from 14.5 to 7.1 cmH2O.ml-1.s-1), whereas no effect was observed in na?ve C57 mice or OVA-challenged C57 mice inhaling air alone. Acutely inhaled CO (500 ppm = 0.05%, for 10 min) reduced MCh-induced airway reactivity (AR) by 20-60% in airway hyperresponsive na?ve A/J mice, whereas repeated 10-min administrations of 500 ppm CO over a 5-day period decreased AR by 50%. Repeated administration of low-dose CO [250 (0.025%) and (0.05%) 500 ppm, 1 h/day, 5 days] to A/J mice with airway inflammation likewise resulted in a drop of AR by 50%, compared with those not receiving CO. Inhibition of guanylyl cyclase/guanosine 3',5'-cyclic monophosphothioate (cGMP) using 1H-[1,2,4] oxydiazolo[4,3-a]quinoxalin-1-one or a competitive inhibitor, Rp diastereomers of 8-bromo-cGMP, resulted in inhibition of the effect of CO on AHR, suggesting that the effects of CO were mediated through this mechanism. These results indicate that low-dose CO can effectively reverse AHR in the presence and absence of airway inflammation in mice and suggest a potential role for CO in the modulation of AHR.  相似文献   

20.
Pretreatment with mycobacterial Ags has been shown to be effective in preventing allergic airway inflammation from occurring in a mouse model. Because most asthmatics are treated after the development of asthma, it is crucial to determine whether mycobacterial Ags can reverse established allergic airway inflammation in the presensitized state. Our hypothesis, based upon our previous findings, is that mycobacteria treatment in presensitized mice will suppress the allergic airway inflammation with associated clinical correlates of established asthma, with the noted exception of factors associated with the early allergic response (EAR). BALB/c mice sensitized and challenged with OVA were evaluated for pulmonary functions during both the EAR and late allergic response, and airway hyperresponsiveness to methacholine. Following this, sensitized mice were randomized and treated with placebo or a single dose (1 x 10(5) CFUs) of bacillus Calmette-Guérin (BCG) or Mycobacterium vaccae via nasal or peritoneal injection. One week later, the mice were rechallenged with OVA and methacholine, followed by bronchoalveolar lavage (BAL) and tissue collection. Mice treated with intranasal BCG were most significantly protected from the late allergic response (p < 0.02), airway hypersensitivity (p < 0.001) and hyperreactivity (p < 0.05) to methacholine, BAL (p < 0.05) and peribronchial (p < 0.01) eosinophilia, and BAL fluid IL-5 levels (p < 0.01) as compared with vehicle-treated, sensitized controls. Intranasal M. vaccae treatment was less effective, suppressing airway hypersensitivity (p < 0.01) and BAL eosinophilia (p < 0.05). No changes were observed in the EAR, BAL fluid IL-4 levels, or serum total and Ag-specific IgE. These data suggest that mycobacterial Ags (BCG>M. vaccae) are effective in attenuating allergic airway inflammation and associated changes in pulmonary functions in an allergen-presensitized state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号