首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

2.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

3.
In order to understand the role of yeast polymerases in spontaneous mutagenesis in non-growing cells we have studied the effects of mutations that impair the 3'--> 5' exonuclease function of polymerases delta (pol3-01) and epsilon (pol2-4) on the spontaneous reversion frequency of the frameshift mutation his7-2 in cells starved for histidine. We showed that for each exonuclease-deficient mutant the rate of reversion per viable cell per day observed in stationary-phase cells remained constant up to the 9th day of starvation (while the number of viable cells dropped), and was very similar to that observed in the same mutants during the growth phase. These data suggest that both DNA polymerases are involved in the control of mutability in non-growing cells.  相似文献   

4.
Eukaryotic DNA polymerases delta and epsilon, both of which are required for chromosomal DNA replication, contain proofreading 3'-->5'exonuclease activity. DNA polymerases lacking proofreading activity act as strong mutators. Here we report isolation of thermotolerant mutants by using a proofreading-deficient DNA polymerase delta variant encoded by pol3-01 in the yeast Saccharomyces cerevisiae. The parental pol3-01 strain grew only poorly at temperatures higher than 38 degrees C. By stepwise elevation of the incubation temperature, thermotolerant mutants that could proliferate at 40 degrees C were successfully obtained; however, no such mutants were isolated with the isogenic POL3 strain. The recessive hot1-1 mutation was defined by genetic analysis of a weak thermotolerant mutant. Strong thermotolerance to 40 degrees C was attained by multiple mutations, at least one of which was recessive. These results indicate that a proofreading-deficient DNA delta polymerase variant is an effective mutator for obtaining yeast mutants that have gained useful characteristics, such as the ability to proliferate in harsh environments.  相似文献   

5.
Our own and literary data about antimutagenic role of autonomous 3'-->5'-exonucleases (AE) are analyzed. AE are not bound covalently to DNA polymerases but often involved in replicative complexes. Intracellular overproduction of AE in bacteria is accompanied with the sharp suppression of mutagenesis, whereas the inactivation of AE in bacteria and higher fungi results in the increase of mutation rates by 2-3 orders of magnitude. The addition of AE in biologically meaningful concentrations to DNA polymerases elevates substantially the accuracy of their work in vitro. In these cases, the reverse mutation rates were measured in the DNA from phage (X174 amber 3, whereas the direct mutation rates--in the DNA from phage M13mp2, both being used as primer-templates for DNA synthesis and then transfected into spheroplasts of Escherichia coli. The accuracy of action of nuclease-free DNA polymerases alpha and beta are shown to raise in the presence of AE by 2-3 orders, the accuracy of moderately processive DNA polymerase I--by 2 orders, the accuracy of highly processive DNA polymerase delta--by 5-10 times, though the latter 2 polymerases display and their own 3'-->5'-exonucleolytic activity. AE, involved in the multienzyme DNA polymerase complexes, augment the accuracy of complexes action by 5-10 times. The model of "external" corrective role of AE in DNA biosynthesis is proposed. Study of 30 objects from all 3 kingdoms of live beings (from archae- and eubacteria to mammalia including human) has shown that AE account, as minimum, from 30 to 90% of the total cellular 3'-->5'-exonucleolytic activity. So AE increase essentially the intracellular ratio of values of 3'-->5'-exonuclease to DNA polymerase activities in the very various representatives from a phylogenetic tree that results always in the augmentation of the accuracy of DNA biosynthesis.  相似文献   

6.
In the yeast Saccharomyces cerevisiae three different DNA polymerases alpha, delta and epsilon are involved in DNA replication. DNA polymerase alpha is responsible for initiation of DNA synthesis and polymerases delta and epsilon are required for elongation of DNA strand during replication. DNA polymerases delta and epsilon are also involved in DNA repair. In this work we studied the role of these three DNA polymerases in the process of recombinational synthesis. Using thermo-sensitive heteroallelic mutants in genes encoding DNA polymerases we studied their role in the process of induced gene conversion. Mutant strains were treated with mutagens, incubated under permissive or restrictive conditions and the numbers of convertants obtained were compared. A very high difference in the number of convertants between restrictive and permissive conditions was observed for polymerases alpha and delta, which suggests that these two polymerases play an important role in DNA synthesis during mitotic gene conversion. Marginal dependence of gene conversion on the activity of polymerase epsilon indicates that this DNA polymerase may be involved in this process but rather as an auxiliary enzyme.  相似文献   

7.
To study in details the assembly of DNA polymerases delta and epsilon holoenzymes a circular double-stranded DNA template containing a gap of 45 nucleotides was constructed. Both replication factor C and proliferating cell nuclear antigen were absolutely required and sufficient for assembly of DNA polymerase delta holoenzyme complex on DNA. On such a circular DNA substrate replication protein A (or E. coli single-strand DNA binding protein) was neither required for assembly of DNA polymerase delta holoenzyme complex nor for the gap-filling reaction. A circular structure of the DNA substrate was found to be absolutely critical for the ability of auxiliary proteins to interact with DNA polymerases. The linearization of the circular DNA template resulted in three dramatic effects: (i) DNA synthesis by DNA polymerase delta holoenzyme was abolished, (ii) the inhibition effect of replication factor C and proliferating cell nuclear antigen on DNA polymerase alpha was relieved and (iii) DNA polymerase epsilon could not form any longer a holoenzyme with replication factor C and proliferating cell nuclear antigen. The comparison of the effect of replication factor C and proliferating cell nuclear antigen on DNA polymerases alpha, delta and epsilon indicated that the auxiliary proteins appear to form a mobile clamp, which can easily slide along double-stranded DNA.  相似文献   

8.
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.  相似文献   

9.
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV-crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40-infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell-cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.  相似文献   

10.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

11.
Withdrawal of interleukin-7 from cultured murine preB lymphocytes induces cell differentiation including V(D)J immunoglobulin gene rearrangements and cell cycle arrest. Advanced steps of the V(D)J recombination reaction involve processing of coding ends by several largely unidentified DNA metabolic enzymes. We have analyzed expression and activity of DNA polymerases alpha, beta, delta and epsilon, proliferating cell nuclear antigen (PCNA), topoisomerases I and II, terminal deoxynucleotidyl transferase (TdT) and DNA ligases I, III and IV upon induction of preB cell differentiation. Despite the immediate arrest of cell proliferation, DNA polymerase delta protein levels remained unchanged for approximately 2 days and its activity was up-regulated several-fold, while PCNA was continuously present. Activity of DNA polymerases alpha,beta and epsilon decreased. Expression and activity of DNA ligase I were drastically reduced, while those of DNA ligases III and IV remained virtually constant. No changes in DNA topoisomerases I or II expression and activity occurred and TdT expression was moderately increased early after induction. Our results render DNA polymerase delta a likely candidate acting in DNA synthesis related to V(D)J recombination in lymphocytes.  相似文献   

12.
By using a complementation assay that enabled DNA polymerase delta and DNA polymerase epsilon to replicate a singly-DNA primed M13 DNA in the presence of proliferating cell nuclear antigen (PCNA) and Escherichia coli single-stranded DNA binding protein (SSB), we have purified from calf thymus in a five step procedure a multipolypeptide complex with molecular masses of polypeptides of 155, 70, 60, 58, 39 (doublet), 38 (doublet) and 36 kDa. The protein is very likely replication factor C (Tsurimoto, T. and Stillman, B. (1989) Mol. Cell. Biol. 9, 609-619). This conclusion is based on biochemical and physicochemical data and the finding that it contains a DNA stimulated ATPase which is under certain conditions stimulated by PCNA. Together RF-C, PCNA and ATP convert DNA polymerases delta and epsilon to holoenzyme forms, which were able to replicate efficiently SSB-covered singly-DNA primed M13 DNA. Calf thymus RF-C could form a primer recognition complex on a 3'-OH primer terminus in the presence of calf thymus PCNA and ATP. Holoenzyme complexes of DNA polymerase delta and epsilon could be isolated suggesting that these enzymes directly interact with the auxiliary proteins in a similar way. Under optimal replication conditions on singly-DNA primed M13 DNA the DNA synthesis rate of DNA polymerase delta was higher than of DNA polymerase epsilon. Based on these functional date possible roles of these two DNA polymerases in eukaryotic DNA replication are discussed.  相似文献   

13.
We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases delta and epsilon showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases delta and epsilon are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair.  相似文献   

14.
Efficient and accurate replication of the eukaryotic nuclear genome requires DNA polymerases (Pols) alpha, delta and epsilon. In all current replication fork models, polymerase alpha initiates replication. However, several models have been proposed for the roles of Pol delta and Pol epsilon in subsequent chain elongation and the division of labor between these two polymerases is still unclear. Here, we revisit this issue, considering recent studies with diagnostic mutator polymerases that support a model wherein Pol epsilon is primarily responsible for copying the leading-strand template and Pol delta is primarily responsible for copying the lagging-strand template. We also review earlier studies in light of this model and then consider prospects for future investigations of possible variations on this simple division of labor.  相似文献   

15.
Knowledge about eukaryotic DNA polymerases has increased considerably during recent years. Much have been learnt about both the structures and the functions of "classical" DNA polymerases alpha, beta, delta, epsilon and gamma. New DNA polymerases that possess very unusual functions have been identified. They are able to perform translesional synthesis, take part in somatic hypermutation and prevent some cancers. Much attention has also been devoted to the role of 3'-->5' exonuclease activity in the accuracy of DNA synthesis. On the other hand, it have been shown that there are also negative aspects of the activity of DNA polymerases. Lack of some DNA polymerases or even their altered functions may lead to carcinogenesis and accelerate the process of ageing.  相似文献   

16.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

18.
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.  相似文献   

19.
8-Hydroxy-5,6,7,8-tetrahydropyrimido[1,2-a]purin- 10(3H)-one,3-(2'-deoxyriboside) (1,N(2)-gamma-hydroxypropano deoxyguanosine, gamma-HOPdG) is a major DNA adduct that forms as a result of exposure to acrolein, an environmental pollutant and a product of endogenous lipid peroxidation. gamma-HOPdG has been shown previously not to be a miscoding lesion when replicated in Escherichia coli. In contrast to those prokaryotic studies, in vivo replication and mutagenesis assays in COS-7 cells using single stranded DNA containing a specific gamma-HOPdG adduct, revealed that the gamma-HOPdG adduct was significantly mutagenic. Analyses revealed both transversion and transition types of mutations at an overall mutagenic frequency of 7.4 x 10(-2)/translesion synthesis. In vitro gamma-HOPdG strongly blocks DNA synthesis by two major polymerases, pol delta and pol epsilon. Replicative blockage of pol delta by gamma-HOPdG could be diminished by the addition of proliferating cell nuclear antigen, leading to highly mutagenic translesion bypass across this adduct. The differential functioning and processing capacities of the mammalian polymerases may be responsible for the higher mutation frequencies observed in this study when compared with the accurate and efficient nonmutagenic bypass observed in the bacterial system.  相似文献   

20.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号