首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The filamentous bacteria Streptomyces coelicolor and Streptomyces lividans exhibit a complex life cycle. After a branched submerged mycelium has been established, aerial hyphae are formed that may septate to form chains of spores. The aerial structures possess several surface layers of unknown nature that make them hydrophobic, one of which is the rodlet layer. We have identified two homologous proteins, RdlA and RdlB, that are involved in the formation of the rodlet layer in both streptomycetes. The rdl genes are expressed in growing aerial hyphae but not in spores. Immunolocalization showed that RdlA and RdlB are present at surfaces of aerial structures, where they form a highly insoluble layer. Disruption of both rdlA and rdlB in S. coelicolor and S. lividans (DeltardlAB strains) did not affect the formation and differentiation of aerial hyphae. However, the characteristic rodlet layer was absent. Genes rdlA and rdlB were also expressed in submerged hyphae that were in contact with a hydrophobic solid. Attachment to this substratum was greatly reduced in the DeltardlAB strains. Sequences homologous to rdlA and rdlB occur in a number of streptomycetes representing the phylogenetic diversity of this group of bacteria, indicating a general role for these proteins in rodlet formation and attachment.  相似文献   

2.
The whiA sporulation gene of Streptomyces coelicolor A3(2), which plays a key role in switching aerial hyphae away from continued extension growth and toward sporulation septation, was cloned by complementation of whiA mutants. DNA sequencing of the wild-type allele and five whiA mutations verified that whiA is a gene encoding a protein with homologues in all gram-positive bacteria whose genome sequence is known, whether of high or low G+C content. No function has been attributed to any of these WhiA-like proteins. In most cases, as in S. coelicolor, the whiA-like gene is downstream of other conserved genes in an operon-like cluster. Phenotypic analysis of a constructed disruption mutant confirmed that whiA is essential for sporulation. whiA is transcribed from at least two promoters, the most downstream of which is located within the preceding gene and is strongly up-regulated when colonies are undergoing sporulation. The up-regulation depends on a functional whiA gene, suggesting positive autoregulation, although it is not known whether this is direct or indirect. Unlike the promoters of some other sporulation-regulatory genes, the whiA promoter does not depend on the sporulation-specific sigma factor encoded by whiG.  相似文献   

3.
4.
Filamentous fungi and filamentous bacteria (i.e., the streptomycetes) belong to different kingdoms that diverged early in evolution. Yet, they adopted similar lifestyles. After a submerged feeding mycelium has been established, hyphae grow into the air and form aerial structures from which (a)sexual spores can develop. These spores are dispersed and can give rise to a new mycelium. Some of the key processes involved in the formation of aerial hyphae by these microbes appear to be very similar. In both cases molecules that lower the surface tension are secreted into the aqueous environment, thereby enabling hyphae to grow into the air. Aerial hyphae are then covered with a hydrophobic film. In fungi, this film is characterized by a mosaic of parallel rodlets, while similar rodlets have also been observed on aerial structures of filamentous bacteria. Although the erection of aerial hyphae in both filamentous fungi and filamentous bacteria is dependent upon (poly)peptides that are structurally unrelated, they can, at least partially, functionally substitute for each other.  相似文献   

5.
6.
7.
Bacterial chromosome segregation usually involves cytoskeletal ParA proteins, ATPases which can form dynamic filaments. In aerial hyphae of the mycelial bacterium Streptomyces coelicolor, ParA filaments extend over tens of microns and are responsible for segregation of dozens of chromosomes. We have identified a novel interaction partner of S. coelicolor ParA, ParJ. ParJ negatively regulates ParA polymerization in vitro and is important for efficient chromosome segregation in sporulating aerial hyphae. ParJ-EGFP formed foci along aerial hyphae even in the absence of ParA. ParJ, which is encoded by sco1662, turned out to be one of the five actinobacterial signature proteins, and another of the five is a ParJ paralogue. We hypothesize that polar growth, which is characteristic not only of streptomycetes, but even of simple Actinobacteria, may be interlinked with ParA polymer assembly and its specific regulation by ParJ.  相似文献   

8.
Streptomyces brasiliensis ATCC 23727 showed extensive sporulation when cultured in a liquid medium containing galactose and glutamic acid as carbon and nitrogen sources. Sporogenic hyphae formed under these conditions were morphologically similar and developmentally equivalent to aerial hyphae and metamorphosed into chains of spores by following a sequence of ultrastructural changes similar to that observed during growth on solid media. In addition, our electron microscopy study revealed two previously unrecognized aspects of hyphal development in streptomycetes: the formation of sporogenic hyphae was always preceded by changes in the structure of the nucleoid, and the sheath that characteristically covered these hyphae was not deposited coincidently with wall formation in the apical growing portion of the hypha.  相似文献   

9.
Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer is the result of the interplay between rodlins and chaplins. A strain of Streptomyces coelicolor in which the rodlin genes rdlA and/or rdlB were deleted no longer formed the rodlet layer. Instead, these surfaces were decorated with fine fibrils. Deletion of all eight chaplin genes (strain DeltachpABCDEFGH) resulted in the absence of the rodlet layer as well as the fibrils at surfaces of aerial hyphae and spores. Apart from coating these surfaces, chaplins are involved in the escape of hyphae into the air, as was shown by the strong reduction in the number of aerial hyphae in the DeltachpABCDEFGH strain. The decrease in the number of aerial hyphae correlated with a lower expression of the rdl genes in the colony. Yet, expression per aerial hypha was similar to that in the wild-type strain, indicating that expression of the rdl genes is initiated after the hypha has sensed that it has grown into the air.  相似文献   

10.
Streptomycetes are antibiotic-producing filamentous microorganisms that have a mycelial life style. In many ways streptomycetes are the odd ones out in terms of cell division. While the basic components of the cell division machinery are similar to those found in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, many aspects of the control of cell division and its co-ordination with chromosome segregation are remarkably different. The rather astonishing fact that cell division is not essential for growth makes these bacteria unique. The fundamental difference between the cross-walls produced during normal growth and sporulation septa formed in aerial hyphae, and the role of the divisome in their formation are discussed. We then take a closer look at the way septum site localization is regulated in the long and multinucleoid Streptomyces hyphae, with particular focus on actinomycete-specific proteins and the role of nucleoid segregation and condensation.  相似文献   

11.
Morphogenesis in the streptomycetes features the differentiation of substrate-associated vegetative hyphae into upwardly growing aerial filaments. This transition requires the activity of bld genes and the secretion of biosurfactants that reduce the surface tension at the colony-air interface enabling the emergence of nascent aerial hyphae. Streptomyces coelicolor produces two classes of surface-active molecules, SapB and the chaplins. While both molecules are important for aerial development, nothing is known about the functional redundancy or interaction of these surfactants apart from the observation that aerial hyphae formation can proceed via one of two pathways: a SapB-dependent pathway when cells are grown on rich medium and a SapB-independent pathway on poorly utilized carbon sources such as mannitol. We used mutant analysis to show that while the chaplins are important, but not required, for development on rich medium, they are essential for differentiation on MS (soy flour mannitol) medium, and the corresponding developmental defects could be suppressed by the presence of SapB. Furthermore, the chaplins are produced by conditional bld mutants during aerial hyphae formation when grown on the permissive medium, MS, suggesting that the previously uncharacterized SapB-independent pathway is chaplin dependent. In contrast, a bld mutant blocked in aerial morphogenesis on all media makes neither SapB nor chaplins. Finally, we show that a constructed null mutant that lacks all chaplin and SapB biosynthetic genes fails to differentiate in any growth condition. We propose that the biosurfactant activities of both SapB and the chaplins are essential for normal aerial hyphae formation on rich medium, while chaplin biosynthesis and secretion alone drives aerial morphogenesis on MS medium.  相似文献   

12.
13.
14.
15.
16.
Streptomyces, a branch of aerobic Gram-positive bacteria, represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain, PP-C42, isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides could be identified from the genome, showing great promise as a source for novel bioactive compounds.  相似文献   

17.
During the life cycle of the streptomycetes, large numbers of hyphae die; the surviving ones undergo cellular differentiation and appear as chains of spores in the mature colony. Here we report that the hyphae of Streptomyces antibioticus die through an orderly process of internal cell dismantling that permits the doomed hyphae to be eliminated with minimum disruption of the colony architecture. Morphological and biochemical approaches revealed progressive disorganization of the nucleoid substructure, followed by degradation of DNA and cytoplasmic constituents with transient maintenance of plasma membrane integrity. Then the hyphae collapsed and appeared empty of cellular contents but retained an apparently intact cell wall. In addition, hyphal death occurred at specific regions and times during colony development. Analysis of DNA degradation carried out by gel electrophoresis and studies on the presence of dying hyphae within the mycelium carried out by electron microscopy revealed two rounds of hyphal death: in the substrate mycelium during emergence of the aerial hyphae, and in the aerial mycelium during formation of the spores. This suggests that hyphal death in S. antibioticus is somehow included in the developmental program of the organism.  相似文献   

18.
Wang SL  Fan KQ  Yang X  Lin ZX  Xu XP  Yang KQ 《Journal of bacteriology》2008,190(11):4061-4068
Ca(2+) was reported to regulate spore germination and aerial hypha formation in streptomycetes; the underlying mechanism of this regulation is not known. cabC, a gene encoding an EF-hand calcium-binding protein, was disrupted or overexpressed in Streptomyces coelicolor M145. On R5- agar, the disruption of cabC resulted in denser aerial hyphae with more short branches, swollen hyphal tips, and early-germinating spores on the spore chain, while cabC overexpression significantly delayed development. Manipulation of the Ca(2+) concentration in R5- agar could reverse the phenotypes of cabC disruption or overexpression mutants and mimic mutant phenotypes with M145, suggesting that the mutant phenotypes were due to changes in the intracellular Ca(2+) concentration. CabC expression was strongly activated in aerial hyphae, as determined by Western blotting against CabC and confocal laser scanning microscopy detection of CabC::enhanced green fluorescent protein (EGFP). CabC::EGFP fusion proteins were evenly distributed in substrate mycelia, aerial mycelia, and spores. Taken together, these results demonstrate that CabC is involved in Ca(2+)-mediated regulation of spore germination and aerial hypha formation in S. coelicolor. CabC most likely acts as a Ca(2+) buffer and exerts its regulatory effects by controlling the intracellular Ca(2+) concentration.  相似文献   

19.
Streptomyces antibioticus accumulated glycogen and trehalose in a characteristic way during growth on solid medium. Glycogen storage in the substrate mycelium took place during development of the aerial mycelium. The concentration of nitrogen source in the culture medium influenced the time at which accumulation started as well as the maximum levels of polysaccharide stored. Degradation of these glycogen reserves was observed near the beginning of sporulation. The onset of sporogenesis was always accompanied by a new accumulation of glycogen in sporulating hyphae. During spore maturation the accumulated polysaccharide was degraded. No glycogen was observed in aerial non-sporulating hyphae or in mature spores. Trehalose was detected during all phases of colony development. A preferential accumulation was found in aerial hyphae and spores, where it reached levels up to 12% of the cell dry weight. The possible roles of both carbohydrates in the developmental cycle of Streptomyces are discussed.  相似文献   

20.
Streptomyces species are bacteria that resemble filamentous fungi in their hyphal mode of growth and sporulation. In Streptomyces coelicolor, the conversion of multigenomic aerial hyphae into chains of unigenomic spores requires synchronized septation accompanied by segregation of tens of chromosomes into prespore compartments. The chromosome segregation is dependent on ParB protein, which assembles into an array of nucleoprotein complexes in the aerial hyphae. Here, we report that nucleoprotein ParB complexes are bound in vitro and in vivo by topoisomerase I, TopA, which is the only topoisomerase I homolog found in S. coelicolor. TopA cannot be eliminated, and its depletion inhibits growth and blocks sporulation. Surprisingly, sporulation in the TopA-depleted strain could be partially restored by deletion of parB. Furthermore, the formation of regularly spaced ParB complexes, which is a prerequisite for proper chromosome segregation and septation during the development of aerial hyphae, has been found to depend on TopA. We hypothesize that TopA is recruited to ParB complexes during sporulation, and its activity is required to resolve segregating chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号