首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to develop a vaccine against Neospora caninum in dogs, we constructed recombinant canine herpesvirus (CHV) expressing N. caninum surface protein, NcSRS2. Indirect immunofluorescence indicated that the antigenic structure of the recombinant NcSRS2 was similar to the authentic parasite protein. The dogs immunised with recombinant virus produced IgG antibody to N. caninum, and their sera recognised the parasite protein on Western blot. The dogs inoculated with recombinant virus showed no clinical symptoms and infectious CHV was not recovered from the dogs, suggesting that recombinant CHV expressing N. caninum proteins may lead to a vaccine against neosporosis in dogs.  相似文献   

2.
3.
4.
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.  相似文献   

5.
DNA vaccines are widely used against infectious agents for their ability to induce both humoral and cellular immune responses. However, safety concerns regarding autoimmune responses to DNA vaccines, particularly to certain plasmids, should not be neglected. In this study, we serendipitously found that mice inoculated with pcDNA3-ANXB1 (pcDNA3-b1) developed autoimmunity, which did not happen in pVAX-ANXB1 (pVAX-b1) inoculated mice. We also employed proteomics approaches to investigate the distinction between the two groups of DNA vaccine immunized mice. Five different proteins with three-fold or greater changes were separated and identified by two-dimensional electrophoresis. Our study verified the safety of the DNA vaccine and unveiled the underlying potential molecular mechanism of DNA vaccine delivery.  相似文献   

6.
Recent reports highlight the potential for integrase-defective lentiviral vectors (IDLV) to be developed as vaccines due to their ability to elicit cell-mediated and humoral immune responses after intramuscular administration. Differently from their integrase-competent counterpart, whose utility for vaccine development is limited by the potential for insertional mutagenesis, IDLV possess a mutation in their integrase gene that prevents genomic integration. Instead, they are maintained as episomal DNA circles that retain the ability to stably express functional proteins. Despite their favorable profile, it is unknown whether IDLV elicit immune responses after intranasal administration, a route that could be advantageous in the case of infection with a respiratory agent. Using influenza as a model, we constructed IDLV expressing the influenza virus nucleoprotein (IDLV-NP), and tested their ability to generate NP-specific immune responses and protect from challenge in vivo. We found that administration of IDLV-NP elicited NP-specific T cell and antibody responses in BALB/c mice. Importantly, IDLV-NP was protective against homologous and heterosubtypic influenza virus challenge only when given by the intranasal route. This is the first report demonstrating that IDLV can induce protective immunity after intranasal administration, and suggests that IDLV may represent a promising vaccine platform against infectious agents.  相似文献   

7.
Genetically engineered plants are economical platforms for the large-scale production of recombinant proteins and have been used over the last 21 years as models for oral vaccines against a wide variety of human infectious and autoimmune diseases with promising results. The main inherent advantages of this approach consist in the absence of purification needs and easy production and administration. One relevant infectious agent is the human immunodeficiency virus (HIV), since AIDS evolved as an alarming public health problem implicating very high costs for government agencies in most African and developing countries. The design of an effective and inexpensive vaccine able to limit viral spread and neutralizing the viral entry is urgently needed. Due to the limited efficacy of the vaccines assessed in clinical trials, new HIV vaccines able to generate broad immune profiles are a priority in the field. This review discusses the current advances on the topic of using plants as alternative expression systems to produce functional vaccine components against HIV, including antigens from Env, Gag and early proteins such as Tat and Nef. Ongoing projects of our group based on the expression of chimeric proteins comprising C4 and V3 domains from gp120, as an approach to elicit broadly neutralizing antibodies are mentioned. The perspectives of the revised approaches, such as the great need of assessing the oral immunogenicity and a detailed immunological characterization of the elicited immune responses, are also discussed.  相似文献   

8.
Background aimsDendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice.MethodsDCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge.ResultsIntramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody.ConclusionsOverall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.  相似文献   

9.
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.  相似文献   

10.
An effective vaccine against acquired immune deficiency syndrome is still unavailable after dozens of years of striving. The glycoprotein gp41 of human immunodeficiency virus is a good candidate as potential immunogen because of its conservation and relatively low glycosylation. As a reference of human immunodeficiency virus gp41, gp45 from equine infectious anemia virus (EIAV) could be used for comparison because both wild‐type and vaccine strain of EIAV have been extensively studied. From structural studies of these proteins, the conformational changes during viral invasion could be unveiled, and a more effective acquired immune deficiency syndrome vaccine immunogen might be designed based on this information.  相似文献   

11.
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed “clean linear B cell epitopes,” and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.  相似文献   

12.
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.  相似文献   

13.
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.  相似文献   

14.
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4+ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.  相似文献   

15.
【目的】构建传染性法氏囊病毒VP2蛋白展示禽流感M2e抗原表位的重组蛋白,研发预防H5或H9亚型禽流感和传染性法氏囊的基因工程疫苗。【方法】根据现有禽流感疫苗株M2e的氨基端12个氨基酸多肽序列(nM2e)序列,结合GenBank中H5和H9亚型禽流感病毒nM2e的比对结果,确定nM2e序列。用融合PCR分别将1拷贝H5或H9的nM2e序列插入IBD B87株VP2基因的PBC区,获得VP2BCnM2e重组基因。将重组基因克隆至杆状病毒表达系统,转染Sf9细胞进行表达。经间接免疫荧光和Western blotting检测Sf9细胞表达重组基因后,扩繁重组病毒,制备疫苗,间隔4周对非免鸡作2次重复免疫,用间接ELISA和鸡胚成纤维细胞中的病毒血清中和试验检测血清中VP2和nM2e的抗体效价。【结果】成功构建含H5或H9 nM2e的VP2BCnM2e重组基因,该重组基因在Sf9细胞中得到表达。经免疫鸡,两重组蛋白均能激发针对VP2和nM2e的抗体,VP2BCnM2eH5组抗体效价高于VP2BCnM2eH9组。【结论】两重组蛋白均具有免疫原性,VP2BCnM2eH5免疫原性更佳。  相似文献   

16.
Innate immunity as the first line of the immune system, provides initial protection against various pathogens and infections. Recent studies suggest a link between cell stress response and immune response upon exogenous insults in the lung. The key proteins in cellular stress responses were demonstrated to be involved in the activation and regulation of the immune signaling pathways. Further research on the function of these stress proteins in innate immunity defenses, particularly in pulmonary diseases and inflammation may help to clarify the disease pathogenesis and provide potential therapeutic treatments for various infectious and inflammatory lung diseases.  相似文献   

17.
18.
Saponins are well recognised as potent immune stimulators, but their applicability as vaccine adjuvants have been limited due to associated toxicity. Formulation of saponin adjuvant with cholesterol and phospholipid produces the particulate ISCOMATRIX adjuvant, and when antigen is also contained within the particle, an ISCOM vaccine is produced. These particulate vaccines retain the adjuvant activity of the saponin component but without toxicity. Saponin-adjuvanted particulate vaccines have significant potential as a novel strategy in vaccine development. This review discusses (i) recent methodologies which have attempted to increase the flexibility and applicability of this technology by modifying either the vaccine composition or the mode of formulation; (ii) recent evaluations of these technologies for inducing protection against infectious diseases and as cancer immunotherapeutics.  相似文献   

19.
For many years, EBV vaccine development efforts have concentrated on the use of structural Ag, gp350, and have been directed toward Ab-mediated blocking virus attachment to the target cell. There is increasing evidence to suggest that the development of neutralizing Abs in vaccinated animals does not always correlate with protection; nevertheless, it has been postulated that gp350-specific T cell-mediated immune responses may have an effector role in protection. This hypothesis has largely remained untested. In the present study, we demonstrate that CTL from acute infectious mononucleosis patients display strong ex vivo reactivity against the EBV structural Ags, gp85 and gp350. Moreover, long-term follow up studies on infectious mononucleosis-recovered individuals showed that these individuals maintain gp350- and gp85-specific memory CTL, albeit at low levels, in the peripheral blood. These results strongly suggest that CTL specific for EBV structural proteins may play an important role in the control of EBV infection during acute infection. More importantly, we also show that prior immunization of HLA A2/Kb transgenic mice with gp350 and gp85 CTL epitopes induced a strong epitope-specific CTL response and afforded protection against gp85- or gp350-expressing vaccinia virus challenge. These results have important implications for future EBV vaccine design and provides evidence, for the first time, that CTL epitopes from EBV structural proteins may be used for establishing strong antiviral immunity against EBV infection.  相似文献   

20.
Lee Mizzen 《Biotherapy》1998,10(3):173-189
Heat shock proteins, or stress proteins have been identified as part of a highly conserved cellular defence mechanism mediated by multiple, distinct gene familes and corresponding gene products. As intracellular chaperones, stress proteins participate in many essential biochemical pathways of protein maturation and function active during times of stress and during normal cellular homeostasis. In addition to their well-characterized role as protein chaperones, stress proteins are now realized to possess another important biological property: immunogenicity. Stress proteins are now understood to play a fundamental role in immune surveillance of infection and malignancy and this body of basic research has provided a framework for their clinical application. As key targets of both humoral and cellular immunity during infection, stress proteins have accordingly received considerable research interest as prophylactic vaccines for infectious disease applications. The unique and potent immunostimulatory properties of stress proteins have similarly been applied to the development of new approaches to cancer therapy, including both protein and gene-based modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号