首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

2.
A halophilic bacterium Halolactibacillus sp. SK71 producing extracellular glucoamylase was isolated from saline soil of Yuncheng Salt Lake, China. Enzyme production was strongly influenced by the salinity of growth medium with maximum in the presence of 5% NaCl. The glucoamylase was purified to homogeneity with a molecular mass of 78.5 kDa. It showed broad substrate specificity and raw starch hydrolyzing activity. Analysis of hydrolysis products from soluble starch by thin‐layer chromatography revealed that glucose was the sole end‐product, indicating the enzyme was a true glucoamylase. Optimal enzyme activity was found to be at 70°C, pH 8.0, and 7.5% NaCl. In addition, it was highly active and stable over broad ranges of temperature (0–100°C), pH (7.0–12.0), and NaCl concentration (0–20%), showing excellent thermostable, alkali stable, and halotolerant properties. Furthermore, it displayed high stability in the presence of hydrophobic organic solvents. The purified glucoamylase was applied for raw corn starch hydrolysis and subsequent bioethanol production using Saccharomyces cerevisiae. The yield in terms of grams of ethanol produced per gram of sugar consumed was 0.365 g/g, with 71.6% of theoretical yield from raw corn starch. This study demonstrated the feasibility of using enzymes from halophiles for further application in bioenergy production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1262–1268, 2014  相似文献   

3.
The gene encoding Lentinula edodes glucoamylase (GLA) was cloned into Saccharomyces cerevisiae, expressed constitutively and secreted in an active form. The enzyme was purified to homogeneity by (NH4)2SO4 fractionation, anion exchange and affinity chromatography. The protein had a correct N-terminal sequence of WAQSSVIDAYVAS, indicating that the signal peptide was efficiently cleaved. The recombinant enzyme was glycosylated with a 2.4% carbohydrate content. It had a pH optimum of 4.6 and a pH 3.4–6.4 stability range. The temperature optimum was 50°C with stability ≤50°C. The enzyme showed considerable loss of activity when incubated with glucose (44%), glucosamine (68%), galactose (22%), and xylose (64%). The addition of Mn++ activated the enzyme by 45%, while Li+, Zn++, Mg++, Cu+, Ca++, and EDTA had no effect. The enzyme hydrolyzed amylopectin at rates 1.5 and 8.0 times that of soluble starch and amylose, respectively. Soluble starch was hydrolyzed 16 and 29 times faster than wheat and corn starch granules, respectively, with the hydrolysis of starch granules using 10× the amount of GLA. Apparent Km and Vmax for soluble starch were estimated to be 3.0 mg/ml and 0.13 mg/ml/min (40°C, pH 5.3), with an apparent kcat of 2.9×105 min−1.  相似文献   

4.
A strain of endophytic fungus EF6 isolated from Thai medicinal plants was found to produce higher levels of extracellular glucoamylase. This strain produced glucoamylase of culture filtrate when grown on 1% soluble starch. The enzyme was purified and characterized. Purification steps involved (NH4)2SO4 precipitation, anion exchange, and gel filtration chromatography. Final purification fold was 14.49 and the yield obtained was 9.15%. The enzyme is monomeric with a molecular mass of 62.2 kDa as estimated by SDS-PAGE, and with a molecular mass of 62.031 kDa estimated by MALDI-TOF spectrometry. The temperature for maximum activity was 60°C. After 30 min for incubation, glucoamylase was found to be stable lower than 50°C. The activity decrease rapidly when residual activity was retained about 45% at 55°C. The pH optimum of the enzyme activity was 6.0, and it was stable over a pH range of 4.0–7.0 at 50°C. The activity of glucoamylase was stimulated by Ca2+, Co2+, Mg2+, Mn2+, glycerol, DMSO, DTT and EDTA, and strongly inhibited by Hg2+. Various types of starch were test, soluble starch proved to be the best substrate for digestion process. The enzyme catalyzes the hydrolysis of soluble starch and maltose as the substrate, the enzyme had K m values of 2.63, and 1.88 mg/ml and V max, values of 1.25, and 2.54 U/min/mg protein, and V max/K m values of 0.48 and 1.35, respectively. The internal amino acid sequences of endophytic fungus EF6 glucoamylase; RALAN HKQVV DSFRS have similarity to the sequence of the glucoamylase purified form Thermomyces lanuginosus. From all results indicated that this enzyme is a glucoamylase (1,4-α-D-glucan glucanohydrolase).  相似文献   

5.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

6.
An amylolytic yeast strain Pichia subpelliculosawas shown to produce glucoamylase in submerged cultivation. The yeast strain produced the enzyme optimally at 30 °C and pH 5.6 in shake flasks agitated at 200 rev min–1 in the optimized glucoamylase production medium containing 1% starch, 0.2% yeast extract, 0.4% K2HPO4, 0.035% NaCl and 0.1% MgCl2. Maximum enzyme production was attained during early growth of 11 h in shake flasks, and 6 h in a laboratory fermenter. By optimizing media components and cultivation parameters, a 15-fold increase in glucoamylase secretion was achieved.  相似文献   

7.
The action of thermostable α-amylase produced by Bacillus licheniformis 44MB82 strain on soluble and insoluble starch, amylose and amylopectin at temperatures 30°C and 90°C was studied. The hydrolysis of soluble starch proceeded rapidly for 10 to 15 minutes after which the maltodextrins thus formed were further dissociated. In the course of 60-minutes enzyme treatment mainly glucose, maltose and maltosugars (from G3 to G6) as low molecular weight products were found and the formation of maltcse and maltotriose was increased by the longer treatment. The hydrolysis of insoluble starch and amylopectin proceeded in the same way while the amylose was hydrolysed slowly.  相似文献   

8.
《Process Biochemistry》2007,42(3):462-465
Under the optimal conditions, 10 U/ml of glucoamylase was produced by the marine yeast Aureobasidium pullulans N13d. It was noticed that the crude glucoamylase actively hydrolyzed potato starch granules, but poorly digested raw corn starch and sweet potato starch, resulting in conversion of 68.5, 19 and 22% of them into glucose within 6 h of incubation in the presence of 40 g/l of potato starch granules and 20 U/ml of the crude enzyme. When potato starch granules concentration was increased from 10 to 80 g/l, hydrolysis extent was decreased from 85.6 to 60%, while potato starch granules concentration was increased from 80 to 360 g/l, hydrolysis extent was decreased from 60 to 56%. Ratio of hydrolysis extent of potato starch granules to hydrolysis extent of gelatinized potato starch was 86.0% and the hydrolysis extent of potato starch granules by action of the crude glucoamylase (1.0 U/ml) was 18.5% within 30 min at 60 °C. Only glucose was detected during the hydrolysis, indicating that the crude enzyme could hydrolyze both α-1,4 and α-1,6 linkages of starch molecule in the potato starch.  相似文献   

9.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

10.
Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

11.
Purified glucoamylase (GA) from Fusarium solani was chemically modified by cross-linking with aniline hydrochloride in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for 1 [aniline-coupled glucoamylase-1 (ACG-1)], 7 (ACG-7), and 13 min (ACG-13). The aniline coupling of GA had a profound enhancing effect on temperature, pH optima, and pK a’s of active site residues. The specificity constants (K cat/K m) of native, ACG-1, ACG-7, and ACG-13 were 136, 244, 262, and 208 at 55°C for starch, respectively. The enthalpy of activation (ΔH*) and free energy of activation (ΔG*) for soluble starch hydrolysis were lower for the chemically modified forms compared to native GA. Proteolysis of ACGs by α-chymotrypsin and subtilisin resulted in activation.  相似文献   

12.
A thermostable extracellular glucoamylase from the thermophilic fungus Humicola grisea was purified to homogeneity. Its molecular mass and isoelectric point were 74 kDa and 8.4, respectively. The enzyme contained 5% carbohydrate, showed maximal activities at pH 6.0 and 60(deg)C, and was stable at 55(deg)C and pH 6.0 for 2 h. The K(infm) of soluble starch hydrolysis at 50(deg)C and pH 6.0 was 0.14 mg/ml. The purified enzyme was remarkably insensitive to glucose.  相似文献   

13.
Penicillium sp. X−1, isolated from decayed raw corn, produced high level of raw-starch-digesting glucoamylase (RSDG) under solid state fermentation (SSF). Maximum enzyme yield of 306.2 U g−1 dry mouldy bran (DMB) was obtained after 36 h of culture upon optimized production. The enzyme could hydrolyse both small and large granule starches but did not adsorb on raw starch. The enzyme exhibited maximum activity at 65°C and pH 6.5, which provided an opportunity of synergism with α-amylase. It significantly hydrolysed 15% (w/v) raw corn starch slurry in synergism with the commercial α-amylase and a degree of hydrolysis of 92.4% was obtained after 2 h of incubation.  相似文献   

14.
Thermostable α‐amylase was covalently bound to calcium alginate matrix to be used for starch hydrolysis at liquefaction temperature of 95°C. 1‐ethyl‐3‐(3‐dimethylamino‐propyl) carbodiimide hydrochloride (EDAC) was used as crosslinker. EDAC reacts with the carboxylate groups on the calcium alginate matrix and the amine groups of the enzyme. Ethylenediamine tetraacetic acid (EDTA) treatment was applied to increase the number of available carboxylate groups on the calcium alginate matrix for EDAC binding. After the immobilization was completed, the beads were treated with 0.1 M calcium chloride solution to reinstate the bead mechanical strength. Enzyme loading efficiency, activity, and reusability of the immobilized α‐amylase were investigated. Covalently bound thermostable α‐amylase to calcium alginate produced a total of 53 g of starch degradation/mg of bound protein after seven consecutive starch hydrolysis cycles of 10 min each at 95°C in a stirred batch reactor. The free and covalently bound α‐amylase had maximum activity at pH 5.5 and 6.0, respectively. The Michaelis‐Menten constant (Km) of the immobilized enzyme (0.98 mg/mL) was 2.5 times greater than that of the free enzyme (0.40 mg/mL). The maximum reaction rate (Vmax) of immobilized and free enzyme were determined to be 10.4‐mg starch degraded/mL min mg bound protein and 25.7‐mg starch degraded/mL min mg protein, respectively. The high cumulative activity and seven successive reuses obtained at liquefaction temperature make the covalently bound thermostable α‐amylase to calcium alginate matrix, a promising candidate for use in industrial starch hydrolysis process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
A neutral α-glucosidase was purified from pig serum by precipitation with ammonium sulfate, chromatographies on DEAE-cellulose and -Sephadex A–50, and gel filtration on Bio-Gel P–300 and Sephadex G–200. The purified enzyme was homogeneous in ultracentrifugal and disc electrophoretic analysis. The sedimentation coefficient (s20,w) was calculated to be 10.7 S, and the isoelectric point, 4.0. The molecular weight was estimated to be approximately 2.7 × 105 by thin-layer gel filtration and SDS-disc electrophoresis.

The enzyme exhibited also glucoamylase activity. The optimal pH was found to be in the pH range of 6.0 to 7.0 for maltose and soluble starch. The ratio of velocity of hydrolysis for maltose (Km, 0.72 mg/ml), soluble starch (Km, 9.8 mg/ml) and shellfish glycogen (Km, 55.6 mg/ml) was calculated to be 100: 110: 5.15 in this order.  相似文献   

16.
A novel exocellular glucoamylase produced by a thermophilic fungus,Cephalosporium eichhorniae, was purified by a combination of membrane filtration and Sephadex chromatography. The enzyme was a glycoprotein, 28% carbohydrate by weight. It was composed of a single polypeptide chain with a molecular weight of 26,850. The enzyme was thermostable with optimum activity between 45 and 62°C. It had a substrate preference of amylose>amylopectin. Analysis by thin-layer and gas-liquid chromatography showed the major hydrolytic product of starch was glucose, classifying this enzyme as a thermophilic glucoamylase.  相似文献   

17.
The V max of an extracellular, thermostable -amylase from Bacillus licheniformis 44MB82 were 5.70×10-3 and 9.70×10-3 mM s-1 at 30 and 90°C, respectively, whereas the K m values were similar (0.9 mg ml-1) at both temperatures. Excluding dextrins, the dominant products from soluble starch and amylopectin hydrolysis contained less than six glucose residues. The enzyme hydrolysed amylopectin better than soluble starch. Increasing the temperature from 30 to 90°C was accompanied by an increase in the production of malto-oligosaccharides, especially maltotetrose, and this was related to the secondary hydrolysis of maltopentose and maltohexose.The authors are with the Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113. 26 Academician G. Bonchev, Bulgaria  相似文献   

18.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

19.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

20.
Glucoamylase was produced extracellularly by fermentation of strain Aspergillus awamori, which had been genetically modified to have high-level glucoamylase activity. Initial experiments showed that the enzyme deactivated quickly, with a half-life of less than 6 days even stored at 5°C. A possible reason for the rapid deactivation was the presence of proteases, attacking and degrading the glucoamylase. Therefore a liquid protease inhibitor cocktail (Sigma, USA) was selected and applied to enhance the stability of the enzyme. The activity of the enzyme (stored at 5°C) measured by the Schoorl-method with starch as substrate showed that the cocktail was effective with the enzyme maintaining 95% of its initial storage activity for almost one year. The enzyme preparation has been used for starch hydrolysis in a flat-sheet membrane bioreactor at 60°C to manufacture glucose solution and its operation stability extended by using the cocktail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号