首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionizing radiation induces various clustered DNA lesions, including double-strand breaks (DSBs) accompanied by nearby oxidative base damage. Previous work showed that, in HeLa nuclear extracts, DSBs with partially complementary 3′ overhangs and a one-base gap in each strand are accurately rejoined, with the gaps being filled by DNA polymerase λ. To determine the possible effect of oxidative base damage on this process, plasmid substrates were constructed containing overhangs with 8-oxoguanine or thymine glycol in base-pairing positions of 3-base (-ACG or -GTA) 3′ overhangs. In this context, 8-oxoguanine was well tolerated by the end-joining machinery when present at one end of the break, but not when present at both ends. Thymine glycol was less well tolerated than 8-oxoguanine, reducing gap filling and accurate rejoining by at least 10-fold. The results suggest that complex DSBs can be accurately rejoined despite the presence of accompanying base damage, but that nonplanar bases constitute a major barrier to this process and promote error-prone joining. A chimeric DNA polymerase, in which the catalytic domain of polymerase λ was replaced with that of polymerase β, could not substitute for polymerase λ in these assays, suggesting that this domain is specifically adapted for gap filling on aligned DSB ends.  相似文献   

2.
Accurate repair of free radical-mediated DNA double-strand breaks by the nonhomologous end joining pathway requires replacement of fragmented nucleotides in the aligned ends by a gap-filling DNA polymerase. Nuclear extracts of human HeLa cells, supplemented with recombinant XRCC4-DNA ligase IV complex (XRCC4/ligase IV), were capable of accurately rejoining model double-strand break substrates with a 1- or 2-base gap, and the gap-filling step was dependent on XRCC4/ligase IV. To determine what polymerase was responsible for gap filling, end joining was examined in the presence of polyclonal antibodies against each of two prime candidate enzymes, DNA polymerases mu and lambda, both of which were present in the extracts. For a DNA substrate with partially complementary 3' overhangs and a 2-base gap, antibodies to polymerase lambda completely eliminated both gap filling and accurate end joining, whereas antibodies to polymerase mu had little effect. Immunodepletion of polymerase lambda, but not polymerase mu, likewise blocked both gap filling and end joining, and both functions could be restored by addition of recombinant polymerase lambda. Recombinant polymerase mu, and a truncated polymerase lambda lacking the Brca1 C-terminal domain, were at least 10-fold less active in restoring gap filling to the immunodepleted extracts, and polymerase beta was completely inactive. The results suggest that polymerase lambda is the primary gap-filling polymerase for accurate nonhomologous end joining, and that the Brca1 C-terminal domain is required for this activity.  相似文献   

3.
Chan CY  Galli A  Schiestl RH 《DNA Repair》2008,7(9):1531-1541
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae POL3/CDC2 gene encodes polymerase delta that is involved in DNA replication and other DNA repair processes. Here, we show that POL3 is involved in nonhomologous end joining using a plasmid-based end-joining assay in yeast, in which the pol3-t mutation caused a 1.9- to 3.2-fold decrease in the end-joining efficiency of partially compatible 5' or 3' ends, or incompatible ends, similar to the pol4 mutant. The pol3-t pol4 double mutation showed a synergistic decrease in the efficiency of NHEJ with partially compatible 5' ends or incompatible ends. Sequence analysis of the rejoined junctions recovered from the wild-type cells and mutants indicated that POL3 is required for gap filling at 3' overhangs, but not 5' overhangs during POL4-independent nonhomologous end joining. We also show that either Pol3 or Pol4 is required for simple religation of compatible or blunt ends. These results suggest that Pol3 has a generalized function in end joining in addition to its role in gap filling at 3' overhangs to enhance the overall efficiency of nonhomologous end joining. Moreover, the decreased end-joining efficiency seen in the pol3-t mutant was not due to S-phase arrest associated with the mutant. Taken together, our genetic evidence supports a novel role of Pol3 in nonhomologous end joining that facilitates gap filling at 3' overhangs in the absence of Pol4 to maintain genomic integrity.  相似文献   

4.
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5′ or 3′ overhangs was stimulated by 20–53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of α-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase α were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases β and did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.  相似文献   

5.
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5′ overhangs, and 3′ overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.  相似文献   

6.
The repair of DNA double-strand breaks (DSB) requires processing of the broken ends to complete the ligation process. Recently, it has been shown that DNA polymerase μ (polμ) and DNA polymerase λ (polλ) are both involved in such processing during non-homologous end joining in vitro. However, no phenotype was observed in animal models defective for either polμ and/or polλ. Such observations could result from a functional redundancy shared by the X family of DNA polymerases. To avoid such redundancy and to clarify the role of polμ in the end joining process, we generated cells over-expressing the wild type as well as an inactive form of polμ (polμD). We observed that cell sensitivity to ionizing radiation (IR) was increased when either polμ or polμD was over-expressed. However, the genetic instability in response to IR increased only in cells expressing polμD. Moreover, analysis of intrachromosomal repair of the I-SceI-induced DNA DSB, did not reveal any effect of either polμ or polμD expression on the efficiency of ligation of both cohesive and partially complementary ends. Finally, the sequences of the repaired ends were specifically affected when polμ or polμD was over-expressed, supporting the hypothesis that polμ could be involved in the repair of a DSB subset when resolution of junctions requires some gap filling.  相似文献   

7.
Tyrosyl-DNA phosphodiesterase (TDP1) is a DNA repair enzyme that removes peptide fragments linked through tyrosine to the 3′ end of DNA, and can also remove 3′-phosphoglycolates (PGs) formed by free radical-mediated DNA cleavage. To assess whether TDP1 is primarily responsible for PG removal during in vitro end joining of DNA double-strand breaks (DSBs), whole-cell extracts were prepared from lymphoblastoid cells derived either from spinocerebellar ataxia with axonal neuropathy (SCAN1) patients, who have an inactivating mutation in the active site of TDP1, or from closely matched normal controls. Whereas extracts from normal cells catalyzed conversion of 3′-PG termini, both on single-strand oligomers and on 3′ overhangs of DSBs, to 3′-phosphate termini, extracts of SCAN1 cells did not process either substrate. Addition of recombinant TDP1 to SCAN1 extracts restored 3′-PG removal, allowing subsequent gap filling on the aligned DSB ends. Two of three SCAN1 lines examined were slightly more radiosensitive than normal cells, but only for fractionated radiation in plateau phase. The results suggest that the TDP1 mutation in SCAN1 abolishes the 3′-PG processing activity of the enzyme, and that there are no other enzymes in cell extracts capable of processing protruding 3′-PG termini. However, the lack of severe radiosensitivity suggests that there must be alternative, TDP1-independent pathways for repair of 3′-PG DSBs.  相似文献   

8.
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends, Pol2 is important for the recession of 3′ flaps that can form during imprecise pairing. Indeed, a mutation in the 3′-5′ exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3′ flaps. Thus, Pol2 performs a key 3′ end-processing step in NHEJ.  相似文献   

9.
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase λ are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5′-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5′-phosphate binding eliminate the preferential filling of 5′-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1–229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1–253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5′- and 3′-exonucleases.  相似文献   

10.
DNA polymerase μ is a member of the mammalian pol X family and reduces deletion during chromosome break repair by nonhomologous end joining (NHEJ). This biological role is linked to pol μ's ability to promote NHEJ of ends with noncomplementary 3′ overhangs, but questions remain regarding how it performs this role. We show here that synthesis by pol μ in this context is often rapid and, despite the absence of primer/template base-pairing, instructed by template. However, pol μ is both much less active and more prone to possible template independence in some contexts, including ends with overhangs longer than two nucleotides. Reduced activity on longer overhangs implies pol μ is less able to synthesize across longer gaps, arguing pol μ must bridge both sides of gaps between noncomplementary ends to be effective in NHEJ. Consistent with this argument, a pol μ mutant defective specifically on gapped substrates is also less active during NHEJ of noncomplementary ends both in vitro and in cells. Taken together, pol μ activity during NHEJ of noncomplementary ends can thus be primarily linked to pol μ's ability to work together with core NHEJ factors to bridge DNA ends and perform a template-dependent gap fill-in reaction.  相似文献   

11.
Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3′ single-stranded overhangs and trans-polymerization using one 3′ end as primer and the other as template, to minimize sequence loss. In this context, we have studied the importance of a previously uncharacterised sequence (‘brooch’), located at the N-terminal boundary of the Polß-like polymerase core, and formed by Tyr141, Ala142, Cys143, Gln144 and Arg145 in Polµ, and by Trp239, Val240, Cys241, Ala242 and Gln243 in Polλ. The brooch is potentially implicated in the maintenance of a closed conformation throughout the catalytic cycle, and our studies indicate that it could be a target of Cdk phosphorylation in Polµ. The brooch is irrelevant for 1 nt gap filling, but of specific importance during end joining: single mutations in the conserved residues reduced the formation of two ended synapses and strongly diminished the ability of Polµ and polymerase lambda to perform non-homologous end joining reactions in vitro.  相似文献   

12.
Promiscuous mismatch extension by human DNA polymerase lambda   总被引:2,自引:1,他引:1  
DNA polymerase lambda (Pol λ) is one of several DNA polymerases suggested to participate in base excision repair (BER), in repair of broken DNA ends and in translesion synthesis. It has been proposed that the nature of the DNA intermediates partly determines which polymerase is used for a particular repair reaction. To test this hypothesis, here we examine the ability of human Pol λ to extend mismatched primer-termini, either on ‘open’ template-primer substrates, or on its preferred substrate, a 1 nt gapped-DNA molecule having a 5′-phosphate. Interestingly, Pol λ extended mismatches with an average efficiency of ≈10−2 relative to matched base pairs. The match and mismatch extension catalytic efficiencies obtained on gapped molecules were ≈260-fold higher than on template-primer molecules. A crystal structure of Pol λ in complex with a single-nucleotide gap containing a dG·dGMP mismatch at the primer-terminus (2.40 Å) suggests that, at least for certain mispairs, Pol λ is unable to differentiate between matched and mismatched termini during the DNA binding step, thus accounting for the relatively high efficiency of mismatch extension. This property of Pol λ suggests a potential role as a ‘mismatch extender’ during non-homologous end joining (NHEJ), and possibly during translesion synthesis.  相似文献   

13.
Biochemical evidence for Ku-independent backup pathways of NHEJ   总被引:10,自引:2,他引:8  
Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3′ or 5′ protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3′ overhangs. We propose that the affinity of Ku for DNA ends, particularly when cooperating with DNA-PKcs, suppresses B-NHEJ by quickly and efficiently binding DNA ends and directing them to D-NHEJ for rapid joining. A chromatin-based model of DNA DSB rejoining accommodating biochemical and genetic results is presented and deviations between in vitro and in vivo results discussed.  相似文献   

14.
Raghavan SC  Raman MJ 《DNA Repair》2004,3(10):1297-1310
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.  相似文献   

15.
The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles.  相似文献   

16.
DNA polymerase eta (Pol η) is a eukaryotic member of the Y-family of DNA polymerase involved in translesion DNA synthesis and genome mutagenesis. Recently, several translesion DNA synthesis polymerases have been found to function in repair of DNA double-strand breaks (DSBs). However, the role of Pol η in promoting DSB repair remains to be well defined. Here, we demonstrated that Pol η could be targeted to etoposide (ETO)-induced DSBs and that depletion of Pol η in cells causes increased sensitivity to ETO. Intriguingly, depletion of Pol η also led to a nonhomologous end joining repair defect in a catalytic activity–independent manner. We further identified the scaffold protein Kap1 as a novel interacting partner of Pol η, the depletion of which resulted in impaired formation of Pol η and Rad18 foci after ETO treatment. Additionally, overexpression of Kap1 failed to restore Pol η focus formation in Rad18-deficient cells after ETO treatment. Interestingly, we also found that Kap1 bound to Rad18 in a Pol η-dependent manner, and moreover, depletion of Kap1 led to a significant reduction in Rad18–Pol η association, indicating that Kap1 forms a ternary complex with Rad18 and Pol η to stabilize Rad18–Pol η association. Our findings demonstrate that Kap1 could regulate the role of Pol η in ETO-induced DSB repair via facilitating Rad18 recruitment and stabilizing Rad18–Pol η association.  相似文献   

17.
Pardo B  Ma E  Marcand S 《Genetics》2006,172(4):2689-2694
In yeast, the nonhomologous end joining pathway (NHEJ) mobilizes the DNA polymerase Pol4 to repair DNA double-strand breaks when gap filling is required prior to ligation. Using telomere-telomere fusions caused by loss of the telomeric protein Rap1 and double-strand break repair on transformed DNA as assays for NHEJ between fully uncohesive ends, we show that Pol4 is able to extend a 3'-end whose last bases are mismatched, i.e., mispaired or unpaired, to the template strand.  相似文献   

18.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα.  相似文献   

19.
Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.  相似文献   

20.
Reaction intermediates formed during the degradation of linear PM2, T5, and λ DNA by herpes simplex virus (HSV) DNase have been examined by agarose gel electrophoresis. Digestion of T5 DNA by HSV type 2 (HSV-2) DNase in the presence of Mn2+ (endonuclease only) gave rise to 6 major and 12 minor fragments. Some of the fragments produced correspond to those observed after cleavage of T5 DNA by the single-strand-specific S1 nuclease, indicating that the HSV DNase rapidly cleaves opposite a nick or gap in a duplex DNA molecule. In contrast, HSV DNase did not produce distinct fragments upon digestion of linear PM2 or λ DNA, which do not contain nicks. In the presence of Mg2+, when both endonuclease and exonuclease activities of the HSV DNase occur, most of the same distinct fragments from digestion of T5 DNA were observed. However, these fragments were then further degraded preferentially from the ends, presumably by the action of the exonuclease activity. Unit-length λ DNA, EcoRI restriction fragments of λ DNA, and linear PM2 DNA were also degraded from the ends by HSV DNase in the same manner. Previous studies have suggested that the HSV exonuclease degrades in the 3′ → 5′ direction. If this is correct, and since only 5′-monophosphate nucleosides are produced, then HSV DNase should “activate” DNA for DNA polymerase. However, unlike pancreatic DNase I, neither HSV-1 nor HSV-2 DNase, in the presence of Mg2+ or Mn2+, activated calf thymus DNA for HSV DNA polymerase. This suggests that HSV DNase degrades both strands of a linear double-stranded DNA molecule from the same end at about the same rate. That is, HSV DNase is apparently capable of degrading DNA strands in the 3′ → 5′ direction as well as in the 5′ → 3′ direction, yielding progressively smaller double-stranded molecules with flush ends. Except with minor differences, HSV-1 and HSV-2 DNases act in a similar manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号