首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus pumilus SG2 isolated from high salinity ecosystem in Iran produces two chitinases (ChiS and ChiL) and secretes them into the medium. In this study, chiS and chiL genes were cloned in pQE-30 expression vector and were expressed in the cytoplasm of Escherichia coli strain M15. The recombinant proteins were purified using Ni-NTA column. The optimum pH and optimum temperature for enzyme activity of ChiS were pH 6, 50°C; those of ChiL were pH 6.5, 40°C. The purified chitinases showed antifungal activity against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea and Bipolaris sp. Moreover, purified ChiS was identified as chitinase/lysozyme, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of cell walls with many kinds of bacteria (Xanthomonas translucens pv. hordei, Xanthomonas axonopodis pv. citri, Bacillus licheniformis, E. coli C600, E. coli TOP10, Pseudomonas aeruginosa and Pseudomonas putida). Strong homology was found between the three-dimensional structures of ChiS and a chitinase/lysozyme from Bacillus circulans WL-12. This is the first report of a bifunctional chitinase/lysozyme from B. pumilus.  相似文献   

2.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Escherichia coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

3.
4.
5.
Heterologous expression of new antifungal chitinase from wheat   总被引:3,自引:1,他引:2  
Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants.  相似文献   

6.
To evaluate the anti-pathogen activity of chitinases, we developed a new method for measuring the lytic activity, and investigated the correlation of the lytic activity with the enzymatic properties by using four chitinase isozymes, Chitinases E, F, H1 and G, which had been purified from yam tubers by column chromatography. Chitinases E, F and H1 had high lytic activity against the plant pathogen, Fusarium oxysporum, but Chitinase G did not. Chitinase E, which is the family 19 chitinase, was similar to Chitinases F and G in its antigenecity, but not to Chitinase H1 or H2. Chitinases H1 and H2 were recognized by the anti-Bombyx mori chitinase antibody, suggesting that Chitinases H1 and H2 are family 18 chitinases like B. mori chitinases. Chitinases E, F and H1 had two optimum pH ranges of 3-4 and 7.5-9 toward glycolchitin, but Chitinase G had only one optimum pH value of 5. Chitinases E, F and H1 had higher affinity to the polymer substrate, glycolchitin, than Chitinase G. These results suggest that the lytic activity of plant chitinases may be related to the chitin affinity and probably to the characteristic optimum pH value, or two values, but not related to its classification. The correlation of the lytic activity of a chitinase isozyme with its elicitor specificity is also discussed.  相似文献   

7.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Eschericha coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

8.
AIMS: To PCR-amplify the full-length genomic-encoding sequence for one chitinase from the facultative fungal pathogen Paecilomyces lilacinus, analyse the DNA and deduced amino acid sequences and compare the amino acid sequence with chitinases reported from mycopathogens, entomopathogens and nematopathogens. METHODS AND RESULTS: The encoding gene (designated as PLC) was isolated using the degenerate PCR primers and the DNA-Walking method. The gene is 1458 bp in length and contains three putative introns. A number of sequence motifs that might play a role in its regulation and function had also been found. Alignment of the translation product (designated as Plc, molecular mass of 45.783 kDa and pI of 5.65) with homologous sequences from other species showed that Plc belongs to Class V chitinase within the glycosyl hydrolase family 18. The phylogenetic and molecular evolutionary analysis using mega (Molecular Evolutionary Genetics Analysis) indicated that these chitinases from mycopathogens, entomopathogens and nematopathogens, the majority of which belong to glycosyl hydrolase family 18, were clustered into two well-supported subgroups corresponding to ascomycetes fungal and nonfungal chitinases (bacteria, baculoviruses). CONCLUSIONS: Our study showed that chitinases from mycoparasitic, entomopathogenic and nematophagous fungi are closely related to each other and reaffirmed the hypothesis that baculovirus chitinase is most likely to be of a bacterial origin - acquired by gene transfer. Bacterial and baculoviral chitinases in our study are potential pathogenicity factors; however, we still cannot ascribe any specific function to those chitinases from the fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report describing the chitinase gene and its translation product from Paecilomyces lilacinus, which constitutes the largest number of formulated biological nematicides reported so far, this is also the first study to analyse and resolve the phylogenetic and molecular evolutionary relationships among the chitinases produced by mycopathogens, entomopathogens and nematopathogens.  相似文献   

9.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

10.
Chitinase A of Streptomyces cyaneus SP-27 or chitinase I of Bacillus circulans KA-304 showed the protoplast-forming activity when combined with alpha-1,3-glucanase of B. circulans KA-304. The gene of chitinase A was cloned. It consisted of 903 nucleotides encoding 301 amino acid residues, including a putative signal peptide (35 amino acid residues). The deduced N-terminal moiety of chitinase A showed sequence homology with the chitin-binding domain of chitinase F from Streptomyces coelicolor and chitinase 30 from Streptomyces olivaceoviridisis. The C-terminal moiety also showed high sequence similarity to the catalytic domain of several Streptomyces family 19 chitinases as well as that of chitinase I of B. circulans KA-304. Recombinant chitinase A was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the recombinant enzyme were almost the same as those of chitinase A purified from a culture filtrate of S. cyaneus SP-27. The recombinant enzyme was superior to B. circulans KA-304 chitinase I not only in respect to protoplast forming activity in a mixture containing alpha-1,3-glucanase, but also to antifungal activity and powder chitin-hydrolyzing activity.  相似文献   

11.
A marine psychrotolerant bacterium from the Antarctic Ocean showing high chitinolytic activity on chitin agar at 5 degrees C was isolated. The sequencing of the 16S rRNA indicates taxonomic affiliation of the isolate Fi:7 to the genus Vibrio. By chitinase activity screening of a genomic DNA library of Vibrio sp. strain Fi:7 in Escherichia coli, three chitinolytic clones could be isolated. Sequencing revealed, for two of these clones, the same open reading frame of 2,189 nt corresponding to a protein of 79.4 kDa. The deduced amino acid sequence of the open reading frame showed homology of 82% to the chitinase ChiA from Vibrio harveyi. The chitinase of isolate Fi:7 contains a signal peptide of 26 amino acids. Sequence alignment with known chitinases showed that the enzyme has a chitin-binding domain and a catalytic domain typical of other bacterial chitinases. The chitinase ChiA of isolate Fi:7 was overexpressed in E. coli BL21(DE3) and purified by anion-exchange and hydrophobic interaction chromatography. Maximal enzymatic activity was observed at a temperature of 35 degrees C and pH 8. Activity of the chitinase at 5 degrees C was 40% of that observed at 35 degrees C. Among the main cations contained in seawater, i.e., Na+, K+, Ca2+, and Mg2+, the enzymatic activity of ChiA could be enhanced twofold by the addition of Ca2+.  相似文献   

12.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

13.
14.
The gene encoding an extracellular chitinase from marine Alteromonas sp. strain O-7 was cloned in Escherichia coli JM109 by using pUC18. The chitinase produced was not secreted into the growth medium but accumulated in the periplasmic space. A chitinase-positive clone of E. coli produced two chitinases with different molecular weights from a single chitinase gene. These proteins showed almost the same enzymatic properties as the native chitinase of Alteromonas sp. strain O-7. The N-terminal sequences of the two enzymes were identical. The nucleotide sequence of the 3,394-bp SphI-HindIII fragment that included the chitinase gene was determined. A single open reading frame was found to encode a protein consisting of 820 amino acids with a molecular weight of 87,341. A putative ribosome-binding site, promoter, and signal sequence were identified. The deduced amino acid sequence of the cloned chitinase showed sequence homology with chitinases A (33.4%) and B (15.3%) from Serratia marcescens. Regardless of origin, the enzymes of the two bacteria isolated from marine and terrestrial environments had high homology, suggesting that these organisms evolved from a common ancestor.  相似文献   

15.
A cDNA encoding a chitinase of Pheadon cochleariae was isolated from a larval gut library. The cDNA encodes a preenzyme with a putative 20 amino-acid signal peptide and a 385 amino-acid mature enzyme of calculated mass of 42.7 kDa. Amino-acid alignment shows 24-33% identity to other insect and crustacea chitinases. The sequence lacks C-terminus domains but active site residues are conserved. Northern analysis localizes the mRNA to guts of feeding larvae. Southern blot analysis, with a complete cDNA probe, suggests that the P. cochleariae genome may contain several chitinase genes. Activity gels show that two groups of chitinases are expressed in the insect. One group comprises chitinases of 30-40 kDa that are active at pH 5.0 and detected in guts of feeding larvae and adults, as well as in pre-pupae and pupae. The other group comprises chitinases of 40-70 kDa that are more active at pH 7.0 and are mainly expressed in pre-pupae and pupae. The biological significance of both groups of chitinases is discussed.  相似文献   

16.
We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of degrading longer chitooligosaccharides at rates similar to those observed for other chitinases. The enzyme was also capable of degrading a colored colloidal chitin substrate (carboxymethyl-chitin-remazol-brilliant violet) and a small, presumably amorphous, subfraction of alpha-chitin and beta-chitin, but was not capable of degrading crystalline chitin completely. The crystal structures of chitinase G and a related Streptomyces chitinase, chitinase C [Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T & Nonaka T (2006) J Mol Biol358, 472-484], showed that these bacterial family 19 chitinases lack several loops that extend the substrate-binding grooves in family 19 chitinases from plants. In accordance with these structural features, detailed analysis of the degradation of chitooligosaccharides by chitinase G showed that the enzyme has only four subsites (- 2 to + 2), as opposed to six (- 3 to + 3) for plant enzymes. The most prominent structural difference leading to reduced size of the substrate-binding groove is the deletion of a 13-residue loop between the two putatively catalytic glutamates. The importance of these two residues for catalysis was confirmed by a site-directed mutagenesis study.  相似文献   

17.
Chitiniphilus shinanonensis strain SAY3(T) is a chitinolytic bacterium isolated from moat water of Ueda Castle in Nagano Prefecture, Japan. Fifteen genes encoding putative chitinolytic enzymes (chiA-chiO) have been isolated from this bacterium. Five of these constitute a single operon (chiCDEFG). The open reading frames of chiC, chiD, chiE, and chiG show sequence similarity to family 18 chitinases, while chiF encodes a polypeptide with two chitin-binding domains but no catalytic domain. Each of the five genes was successfully expressed in Escherichia coli, and the resulting recombinant proteins were characterized. Four of the recombinant proteins (ChiC, ChiD, ChiE, and ChiG) exhibited endo-type chitinase activity toward chitinous substrates, while ChiF showed no chitinolytic activity. In contrast to most endo-type chitinases, which mainly produce a dimer of N-acetyl-D-glucosamine (GlcNAc) as final product, ChiG completely split the GlcNAc dimer into GlcNAc monomers, indicating that it is a novel chitinase.  相似文献   

18.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

19.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号