首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outpatient appointment scheduling balances efficiency with access to healthcare services, yet appointment no-shows, cancellations, and delay are significant barriers to effective healthcare delivery. Patients with longer appointment delay often waste appointments more frequently, prompting a need for greater flexibility in appointment allocation. We present a joint capacity control and overbooking model where a clinic maximizes profits by controlling bookings from two sequential patient classes with different no-show rates. When booking advance requests, the clinic must balance high no-show probability with the probability of subsequent requests at lower waste rates. We show the optimal policy is computationally intensive to derive; therefore, we develop bounds and approximations which we compare via numerical study with the optimal policy as well as policies from practice and previous literature. We find the optimal policy increases profits 17.8% over first-come-first-serve allocation. We develop a simple policy which performs 0.3% below optimal on average. While pure open access can achieve optimality, it performs 23.0% below optimal on average.  相似文献   

2.
 This paper describes a model for the spatial spread of an epidemic in which the latent period has a Gamma distribution with arbitrary mean and variance while the infected and uninfected may have different diffusion coefficients. Using a variant of the “linear chain trick” we derive a simple algorithm for the propagation speed of the infection front. By way of verification, we show that, with suitably matched parameters, the algorithm agrees closely with speeds obtained numerically from the corresponding model in which the latent period is a constant. Received: 6 March 2001 / Revised version: 15 July 2001 / Published online: 8 February 2002  相似文献   

3.
MOTIVATION: Affymetrix GeneChip arrays are currently the most widely used microarray technology. Many summarization methods have been developed to provide gene expression levels from Affymetrix probe-level data. Most of the currently popular methods do not provide a measure of uncertainty for the expression level of each gene. The use of probabilistic models can overcome this limitation. A full hierarchical Bayesian approach requires the use of computationally intensive MCMC methods that are impractical for large datasets. An alternative computationally efficient probabilistic model, mgMOS, uses Gamma distributions to model specific and non-specific binding with a latent variable to capture variations in probe affinity. Although promising, the main limitations of this model are that it does not use information from multiple chips and does not account for specific binding to the mismatch (MM) probes. RESULTS: We extend mgMOS to model the binding affinity of probe-pairs across multiple chips and to capture the effect of specific binding to MM probes. The new model, multi-mgMOS, provides improved accuracy, as demonstrated on some bench-mark datasets and a real time-course dataset, and is much more computationally efficient than a competing hierarchical Bayesian approach that requires MCMC sampling. We demonstrate how the probabilistic model can be used to estimate credibility intervals for expression levels and their log-ratios between conditions. AVAILABILITY: Both mgMOS and the new model multi-mgMOS have been implemented in an R package, which is available at http://www.bioinf.man.ac.uk/resources/puma.  相似文献   

4.
5.
6.
We present a model that scales from the physiological and structural traits of individual trees competing for light and nitrogen across a gradient of soil nitrogen to their community-level consequences. The model predicts the most competitive (i.e., the evolutionarily stable strategy [ESS]) allocations to foliage, wood, and fine roots for canopy and understory stages of trees growing in old-growth forests. The ESS allocations, revealed as analytical functions of commonly measured physiological parameters, depend not on simple root-shoot relations but rather on diminishing returns of carbon investment that ensure any alternate strategy will underperform an ESS in monoculture because of the competitive environment that the ESS creates. As such, ESS allocations do not maximize nitrogen-limited growth rates in monoculture, highlighting the underappreciated idea that the most competitive strategy is not necessarily the "best," but rather that which creates conditions in which all others are "worse." Data from 152 stands support the model's surprising prediction that the dominant structural trade-off is between fine roots and wood, not foliage, suggesting the "root-shoot" trade-off is more precisely a "root-stem" trade-off for long-lived trees. Assuming other resources are abundant, the model predicts that forests are limited by both nitrogen and light, or nearly so.  相似文献   

7.
We develop a workload model based on the observed behavior of parallel computers at the San Diego Supercomputer Center and the Cornell Theory Center. This model gives us insight into the performance of strategies for scheduling moldable jobs on space-sharing parallel computers. We find that Adaptive Static Partitioning (ASP), which has been reported to work well for other workloads, does not perform as well as strategies that adapt better to system load. The best of the strategies we consider is one that explicitly reduces allocations when load is high (a variation of Sevcik's (1989) A+ strategy). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
BACKGROUND: and Aims In many studies of nitrogen-limited plant growth a linear relationship has been found between relative growth rate and plant nitrogen concentration, showing a negative intercept at a plant nitrogen concentration of zero. This relationship forms the basis of the nitrogen productivity theory. On the basis of empirical findings, several authors have suggested that there is also a distinctive relationship between allocation and plant nitrogen concentration. The primary aim of this paper is to develop a simple plant growth model that quantifies this relationship in mathematical terms. The model was focused on nitrogen allocation to avoid the complexity of differences in nitrogen concentrations in the different plant compartments. The secondary aim is to use the model for examining the processes that underlie the empirically based nitrogen productivity theory. METHODS: In the construction of the model we focused on the formation and degradation of biologically active nitrogen in enzymes involved in the photosynthetic process (photosynthetic nitrogen). It was assumed that, in nitrogen-limiting conditions, the formation of photosynthetic nitrogen is proportional to nitrogen uptake. Furthermore it was assumed that the degradation of photosynthetic nitrogen is governed by first-order kinetics. Model predictions of nitrogen allocation were compared with data from literature describing four studies of growth. Model predictions of whole plant growth were compared with the above-mentioned nitrogen productivity theory. KEY RESULTS: Allocation predictions agreed well with the investigated empirical data. The ratio of leaf nitrogen and plant nitrogen declines linearly with the inverse of plant nitrogen concentration. Nitrogen productivity is proportional to this ratio. Predictions for whole-plant growth were in accordance with the nitrogen productivity theory. CONCLUSIONS: The agreement between model predictions and empirical findings suggests that the derived equation for nitrogen allocation and its relationship to plant nitrogen concentration might be generally applicable. The negative intercept in the linear relationship between relative growth rate and plant nitrogen concentration is interpreted as being equal to the degradation constant of photosynthetic nitrogen.  相似文献   

9.
SM Sahraeian  BJ Yoon 《PloS one》2012,7(8):e41474
In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein-protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model can effectively create synthetic networks whose internal and cross-network properties closely resemble those of real PPI networks. The proposed model can serve as an effective framework for generating comprehensive benchmark datasets that can be used for reliable performance assessment of comparative network analysis algorithms. Using this model, we constructed a large-scale network alignment benchmark, called NAPAbench, and evaluated the performance of several representative network alignment algorithms. Our analysis clearly shows the relative performance of the leading network algorithms, with their respective advantages and disadvantages. The algorithm and source code of the network synthesis model and the network alignment benchmark NAPAbench are publicly available at http://www.ece.tamu.edu/bjyoon/NAPAbench/.  相似文献   

10.
We studied the dynamics of a neural network that has both recurrent excitatory and random inhibitory connections. Neurons started to become active when a relatively weak transient excitatory signal was presented and the activity was sustained due to the recurrent excitatory connections. The sustained activity stopped when a strong transient signal was presented or when neurons were disinhibited. The random inhibitory connections modulated the activity patterns of neurons so that the patterns evolved without recurrence with time. Hence, a time passage between the onsets of the two transient signals was represented by the sequence of activity patterns. We then applied this model to represent the trace eye blink conditioning, which is mediated by the hippocampus. We assumed this model as CA3 of the hippocampus and considered an output neuron corresponding to a neuron in CA1. The activity pattern of the output neuron was similar to that of CA1 neurons during trace eye blink conditioning, which was experimentally observed.  相似文献   

11.
A network model for activity-dependent sleep regulation   总被引:1,自引:0,他引:1  
We develop and characterize a dynamical network model for activity-dependent sleep regulation. Specifically, in accordance with the activity-dependent theory for sleep, we view organism sleep as emerging from the local sleep states of functional units known as cortical columns; these local sleep states evolve through integration of local activity inputs, loose couplings with neighboring cortical columns, and global regulation (e.g. by the circadian clock). We model these cortical columns as coupled or networked activity-integrators that transition between sleep and waking states based on thresholds on the total activity. The model dynamics for three canonical experiments (which we have studied both through simulation and system-theoretic analysis) match with experimentally observed characteristics of the cortical-column network. Most notably, assuming connectedness of the network graph, our model predicts the recovery of the columns to a synchronized state upon temporary overstimulation of a single column and/or randomization of the initial sleep and activity-integration states. In analogy with other models for networked oscillators, our model also predicts the possibility for such phenomena as mode-locking.  相似文献   

12.
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.  相似文献   

13.
14.
A neural network which models multistable perception is presented. The network consists of sensor and inner neurons. The dynamics is established by a stochastic neuronal dynamics, a formal Hebb-type coupling dynamics and a resource mechanism that corresponds to saturation effects in perception. From this a system of coupled differential equations is derived and analyzed. Single stimuli are bound to exactly one percept, even in ambiguous situations where multistability occurs. The network exhibits discontinuous as well as continuous phase transitions and models various empirical findings, including the percepts of succession, alternative motion and simultaneity; the percept of oscillation is explained by oscillating percepts at a continuous phase transition. Received: 13 September 1995 / Accepted: 3 June 1996  相似文献   

15.
16.
This paper deals with the problem of representing and generating unconstrained aiming movements of a limb by means of a neural network architecture. The network produced time trajectories of a limb from a starting posture toward targets specified by sensory stimuli. Thus the network performed a sensory-motor transformation. The experimenters trained the network using a bell-shaped velocity profile on the trajectories. This type of profile is characteristic of most movements performed by biological systems. We investigated the generalization capabilities of the network as well as its internal organization. Experiments performed during learning and on the trained network showed that: (i) the task could be learned by a three-layer sequential network; (ii) the network successfully generalized in trajectory space and adjusted the velocity profiles properly; (iii) the same task could not be learned by a linear network; (iv) after learning, the internal connections became organized into inhibitory and excitatory zones and encoded the main features of the training set; (v) the model was robust to noise on the input signals; (vi) the network exhibited attractor-dynamics properties; (vii) the network was able to solve the motorequivalence problem. A key feature of this work is the fact that the neural network was coupled to a mechanical model of a limb in which muscles are represented as springs. With this representation the model solved the problem of motor redundancy.  相似文献   

17.
A hierarchical neural network model for associative memory   总被引:1,自引:0,他引:1  
A hierarchical neural network model with feedback interconnections, which has the function of associative memory and the ability to recognize patterns, is proposed. The model consists of a hierarchical multi-layered network to which efferent connections are added, so as to make positive feedback loops in pairs with afferent connections. The cell-layer at the initial stage of the network is the input layer which receives the stimulus input and at the same time works as an output layer for associative recall. The deepest layer is the output layer for pattern-recognition. Pattern-recognition is performed hierarchically by integrating information by converging afferent paths in the network. For the purpose of associative recall, the integrated information is again distributed to lower-order cells by diverging efferent paths. These two operations progress simultaneously in the network. If a fragment of a training pattern is presented to the network which has completed its self-organization, the entire pattern will gradually be recalled in the initial layer. If a stimulus consisting of a number of training patterns superposed is presented, one pattern gradually becomes predominant in the recalled output after competition between the patterns, and the others disappear. At about the same time when the recalled pattern reaches a steady state in he initial layer, in the deepest layer of the network, a response is elicited from the cell corresponding to the category of the finally-recalled pattern. Once a steady state has been reached, the response of the network is automatically extinguished by inhibitory signals from a steadiness-detecting cell. If the same stimulus is still presented after inhibition, a response for another pattern, formerly suppressed, will now appear, because the cells of the network have adaptation characteristics which makes the same response unlikely to recur. Since inhibition occurs repeatedly, the superposed input patterns are recalled one by one in turn.  相似文献   

18.
19.
An efficient two-step Markov blanket method for modeling and inferring complex regulatory networks from large-scale microarray data sets is presented. The inferred gene regulatory network (GRN) is based on the time series gene expression data capturing the underlying gene interactions. For constructing a highly accurate GRN, the proposed method performs: 1) discovery of a gene's Markov Blanket (MB), 2) formulation of a flexible measure to determine the network's quality, 3) efficient searching with the aid of a guided genetic algorithm, and 4) pruning to obtain a minimal set of correct interactions. Investigations are carried out using both synthetic as well as yeast cell cycle gene expression data sets. The realistic synthetic data sets validate the robustness of the method by varying topology, sample size, time delay, noise, vertex in-degree, and the presence of hidden nodes. It is shown that the proposed approach has excellent inferential capabilities and high accuracy even in the presence of noise. The gene network inferred from yeast cell cycle data is investigated for its biological relevance using well-known interactions, sequence analysis, motif patterns, and GO data. Further, novel interactions are predicted for the unknown genes of the network and their influence on other genes is also discussed.  相似文献   

20.
In the real world, visual information is selected over time as well as space, when we prioritise new stimuli for attention. Watson and Humphreys [Watson, D., Humphreys, G.W., 1997. Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review 104, 90-122] presented evidence that new information in search tasks is prioritised by (amongst other processes) active ignoring of old items - a process they termed visual marking. In this paper we present, for the first time, an explicit computational model of visual marking using biologically plausible activation functions. The "spiking search over time and space" model (sSoTS) incorporates different synaptic components (NMDA, AMPA, GABA) and a frequency adaptation mechanism based on [Ca(2+)] sensitive K(+) current. This frequency adaptation current can act as a mechanism that suppresses the previously attended items. We show that, when coupled with a process of active inhibition applied to old items, frequency adaptation leads to old items being de-prioritised (and new items prioritised) across time in search. Furthermore, the time course of these processes mimics the time course of the preview effect in human search. The results indicate that the sSoTS model can provide a biologically plausible account of human search over time as well as space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号