首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esperase is a highly alkalophilic bacterial proteinase produced by Bacillus lentus. The enzyme hydrolyzes peptide bonds comprising the carboxylic groups of hydrophobic as well as hydrophilic residues in the oxidized insulin B chain. Some of these bonds are not attacked by other alkaline microbial proteinases. P1-P4 specificity was determined by a series of peptide nitroanilides. The S1 recognition loop exhibits a preference for Phe. The "cleft" of the smallest subsite S2 prefers Ala and exhibits low affinity for the larger chain of Leu. S3 is more open than the other subsites and can accept a variety of residues. Hydrophobic interactions predominate in the S4-P4 interactions because S4 can accommodate Phe very well. The results characterize Esperase as an endopeptidase with a broader specificity in comparison with other microbial serine proteinases. This is probably owing to a more flexible substrate binding site.  相似文献   

2.
Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They were found to be the protein products of the rKlk2 (tonin) and the rKlk9 genes by amino acid sequence analysis (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the discussion panel from the participants of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These two proteinases of similar structure also had very similar physicochemical properties. They differed from other kallikrein-related proteinases in having high pHi values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a two-chain protein after reduction. Their enzymatic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the five other kallikrein-related proteinases we have purified so far, kallikrein rK9 was not inhibited by aprotinin. rK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9 where it was the major kallikrein-like component. The amino acids preferentially accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsin-like properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biologically active peptides. Subsites accommodating residues COOH-terminal to the scissile bond were also important in determining the overall substrate specificity of these proteinases. rK2 and rK9 both showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite were found to intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their P1 specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).  相似文献   

4.
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.  相似文献   

5.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

6.
Tripeptidyl peptidase I (TTP-I), also known as CLN2, a member of the family of serine-carboxyl proteinases (S53), plays a crucial role in lysosomal protein degradation and a deficiency in this enzyme leads to fatal neurodegenerative disease. Recombinant human TPP-I and its mutants were analyzed in order to clarify the biochemical role of TPP-I and its mechanism of activity. Ser280, Glu77, and Asp81 were identified as the catalytic residues based on mutational analyses, inhibition studies, and sequence similarities with other family members. TPP-I hydrolyzed most effectively the peptide Ala-Arg-Phe*Nph-Arg-Leu (*, cleavage site) (k(cat)/K(m) = 2.94 microM(-1).s(-1)). The k(cat)/K(m) value for this substrate was 40 times higher than that for Ala-Ala-Phe-MCA. Coupled with other data, these results strongly suggest that the substrate-binding cleft of TPP-I is composed of only six subsites (S(3)-S(3)'). TPP-I prefers bulky and hydrophobic amino acid residues at the P(1) position and Ala, Arg, or Asp at the P(2) position. Hydrophilic interactions at the S(2) subsite are necessary for TPP-I, and this feature is unique among serine-carboxyl proteinases. TPP-I might have evolved from an ancestral gene in order to cleave, in cooperation with cathepsins, useless proteins in the lysosomal compartment.  相似文献   

7.
Kumamolysin, a carboxyl proteinase from Bacillus novosp. MN-32, is characterized by its thermostability and insensitivity to aspartic proteinase inhibitors such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3-(p-nitro-phenoxy)propane. Here, its substrate specificity was elucidated using two series of synthetic chromogenic substrates: P(5)-P(4)-P(3)-P(2)-Phe*Nph (p-nitrophenylalanine: *cleavage site)-P(2)'-P(3)', in which the amino acid residues at the P(5)-P(2), P(2)' and P(3)' positions were systematically substituted. Among 74 substrates, kumamolysin was shown to hydrolyze Lys-Pro-Ile-Pro-Phe-Nph-Arg-Leu most effectively. The kinetic parameters of this peptide were K(m) = 41+/-5 microM, k(cat) = 176+/- 10 s(-1), and k(cat)/K(m) = 4.3+/-0.6 mM(-1) x s(-1). These systematic analyses revealed the following features: (i) Kumamolysin had a unique preference for the P(2) position. Kumamolysin preferentially hydrolyzed peptides having an Ala or Pro residue at the P(2) position; this was also observed for the pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4 [J-4; Shibata et al. (1998) J. Biochem. 124, 642-647]. Other carboxyl proteinases, including Pseudomonas sp. 101 pepstatin-insensitive carboxyl proteinase (PCP) and Xanthomonas sp. T-22 pepstatin-insensitive carboxyl proteinase (XCP), preferred peptides having hydrophobic and bulky amino acid residue such as Leu at the P(2) position. (ii) Kumamolysin preferred such charged amino acid residues as Glu or Arg at the P(2)' position, suggesting that the S(2)' subsite of kumamolysin is occupied by hydrophilic residues, similar to that of PCP, XCP, and J-4. In general, the S(2)' subsite of pepstatin-sensitive carboxyl proteinases (aspartic proteinases) is hydrophobic in nature. Thus, the hydrophilic nature of the S(2)' subsite was confirmed to be a distinguishing feature of pepstatin-insensitive carboxyl proteinases from prokaryotes.  相似文献   

8.
The substrate specificity of Escherichia coli peptide deformylase was investigated by measuring the efficiency of the enzyme to cleave formyl- peptides of the general formula Fo-Xaa-Yaa-NH2, where Xaa represents a set of 27 natural and unusual amino acids and Yaa corresponds to a set of 19 natural amino acids. Substrates with bulky hydrophobic side-chains at the P1' position were the most efficiently cleaved, with catalytic efficiencies greater by two to five orders of magnitude than those associated with polar or charged amino acid side-chains. Among hydrophobic side-chains, linear alkyl groups were preferred at the P1' position, as compared to aryl-alkyl side-chains. Interestingly, in the linear alkyl substituent series, with the exception of norleucine, deformylase exhibits a preference for the substrate containing Met in the P1' position. Next, the influence in catalysis of the second side-chain was studied after synthesis of 20 compounds of the formula Fo-Nle-Yaa-NH2. Their deformylation rates varied within a range of only one order of magnitude. A 3D model of the interaction of PDF with an inhibitor was then constructed and revealed indeed the occurrence of a deep and hydrophobic S1' pocket as well as the absence of a true S2' pocket. These analyses pointed out a set of possible interactions between deformylase and its substrates, which could be the ground driving substrate specificity. The validity of this enzyme:substrate docking was further probed with the help of a set of site-directed variants of the enzyme. From this, the importance of residues at the bottom of the S1' pocket (Ile128 and Leu125) as well as the hydrogen bond network that the main chain of the substrate makes with the enzyme were revealed. Based on the numerous homologies that deformylase displays with thermolysin and metzincins, a mechanism of enzyme:substrate recognition and hydrolysis could finally be proposed. Specific features of PDF with respect to other members of the enzymes with motif HEXXH are discussed.  相似文献   

9.
Crystal structure of human pepsin and its complex with pepstatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

10.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

11.
To investigate the function of proteinases in the fruiting of Basidiomycetes, we purified the neutral proteinase in vegetative mycelium of Lentinus edodes. About 1.6 mg of purified enzyme was obtained from 1.5 kg of mycelium. The purified enzyme was confirmed to be monodispersive on disc electrophoresis.

The neutral proteinase was most active around pH 7.5 toward hemoglobin and 7.0 toward casein and was extremely labile with temperature. The enzyme was strongly inhibited by EDTA or Talopeptin (MK-I). The molecular weight and isoelectric point of the enzyme were 45,000 and pH 5.3, respectively. The enzyme contained no methionine residues. The enzyme hydrolyzed the bonds involving hydrophobic or bulky amino acid residues of oxidized insulin B-chain such as His-Leu (10–11 and 5–6), Leu (17)-Val (18) and Ala (14)-Leu (15).

These characteristics are compared with those of the metal proteinase in the fruit-body of the same fungus, which was purified and characterized at the same time as in vegetative mycelium. We also compare it with proteinases from other microbes.  相似文献   

12.
The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.  相似文献   

13.
The latex of the tropical species Carica papaya is well known for being a rich source of the four cysteine endopeptidases papain, chymopapain, glycyl endopeptidase and caricain. Altogether, these enzymes are present in the laticifers at a concentration higher than 1 mM. The proteinases are synthesized as inactive precursors that convert into mature enzymes within 2 min after wounding the plant when the latex is abruptly expelled. Papaya latex also contains other enzymes as minor constituents. Several of these enzymes namely a class-II and a class-III chitinase, an inhibitor of serine proteinases and a glutaminyl cyclotransferase have already been purified up to apparent homogeneity and characterized. The presence of a beta-1,3-glucanase and of a cystatin is also suspected but they have not yet been isolated. Purification of these papaya enzymes calls on the use of ion-exchange supports (such as SP-Sepharose Fast Flow) and hydrophobic supports [such as Fractogel TSK Butyl 650(M), Fractogel EMD Propyl 650(S) or Thiophilic gels]. The use of covalent or affinity gels is recommended to provide preparations of cysteine endopeptidases with a high free thiol content (ideally 1 mol of essential free thiol function per mol of enzyme). The selective grafting of activated methoxypoly(ethylene glycol) chains (with M(r) of 5000) on the free thiol functions of the proteinases provides an interesting alternative to the use of covalent and affinity chromatographies especially in the case of enzymes such as chymopapain that contains, in its native state, two thiol functions.  相似文献   

14.
In an attempt to understand the structural reasons for differences in specificity and activity of proteinases from two retroviruses encoded by human immunodeficiency virus (HIV) and myeloblastosis associated virus (MAV), we mutated five key residues predicted to form part of the enzyme subsites S1, S2 and S3 in the substrate binding cleft of the wild-type MAV proteinase wMAV PR. These were changed to the residues occupying a similar or identical position in the HIV-1 enzyme. The resultant mutated MAV proteinase (mMAV PR) exhibits increased enzymatic activity, altered substrate specificity, a substantially changed pH activity profile and a higher pH stability close to that observed in the HIV-1 PR. This dramatic alteration of MAV PR activity achieved by site-directed mutagenesis suggests that we have identified the amino acid residues contributing substantially to the differences between MAV and HIV-1 proteinases.  相似文献   

15.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

16.
Detailed structure of the pepsin active site in the region of the active aspartic acid residues and substrate binding S1 and S1' sites is considered. At the active site of the enzyme crystals studied several molecules of ethanol were detected, which interact with active groups. The catalytic properties of aspartyl proteinases towards dipeptide substrates were explained on the base of the specific structure of S1 and S1' binding sites.  相似文献   

17.
1. alpha(2)-Macroglobulin is known to bind and inhibit a number of serine proteinases. We show that it binds thiol and carboxyl proteinases, and there is now reason to believe that alpha(2)-macroglobulin can bind essentially all proteinases. 2. Radiochemically labelled trypsin, chymotrypsin, cathepsin B1 and papain are bound by alpha(2)-macroglobulin in an approximately equimolar ratio. Equimolar binding was confirmed for trypsin by activesite titration. 3. Pretreatment of alpha(2)-macroglobulin with a saturating amount of one proteinase prevented the subsequent binding of another. We conclude that each molecule of alpha(2)-macroglobulin is able to react with one molecule of proteinase only. 4. alpha(2)-Macroglobulin did not react with exopeptidases, non-proteolytic hydrolases or inactive forms of endopeptidases. 5. The literature on binding and inhibition of proteinases by alpha(2)-macroglobulin is reviewed, and from consideration of this and our own work several general characteristics of the interaction can be discerned. 6. A model is proposed for the molecular mechanism of the interaction of alpha(2)-macroglobulin with proteinases. It is suggested that the enzyme cleaves a peptide bond in a sensitive region of the macroglobulin, and that this results in a conformational change in the alpha(2)-macroglobulin molecule that traps the enzyme irreversibly. Access of substrates to the active site of the enzyme becomes sterically hindered, causing inhibition that is most pronounced with large substrate molecules. 7. The possible physiological importance of the unique binding characteristics of alpha(2)-macroglobulin is discussed.  相似文献   

18.
Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7. Along with these data, enzyme kinetic studies and extended substrate specificity profiling have led to an understanding of the non-prime-side substrate preferences of KLK4, 5, 6, and 7. The shape and polarity of the specificity pockets S1-S4 explain well their substrate preferences. KLK4, 5, and 6 exhibit trypsin-like specificity, with a strong preference for Arg at the P1 position of substrates. In contrast, KLK7 displays a unique chymotrypsin-like specificity for Tyr, which is also preferred at P2. All four KLKs show little specificity for P3 residues and have a tendency to accept hydrophobic residues at P4. Interestingly, for KLK4, 5, and 7 extended charged surface regions were observed that most likely serve as exosites for physiological substrates.  相似文献   

19.
1. Two types of acid proteinases were found in the adult stomach of the bullfrog, Rana catesbeiana. 2. The first type of enzyme appeared in the developing stomach and esophagus and contained more than two kinds of acid proteinases. 3. These enzymes were identified as pepsin-type enzymes. 4. The second type of enzyme existed from the larva to adult stage and was also present in the adult duodenum. 5. This enzyme was different from pepsin and thought to be cathepsin E.  相似文献   

20.
A collagenolytic proteinase was purified from the intestines of Atlantic cod by (NH4)2SO4 fractionation, hydrophobic interaction chromatography (phenyl-Sepharose) and ion-exchange chromatography (DEAE-Sepharose). The proteinase has an estimated molecular weight of 24.1 (±0.5) kDa as determined by SDS-PAGE and belongs to the chymotrypsin family of serine proteinases. The enzyme cleaves native collagen types I, III, IV and V, and also readily hydrolyzes succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (sAAPFpna), an amide substrate of chymotrypsin, as well as succinyl-l-Ala-l-Ala-l-Pro-l-Leu-p-nitroanilide, a reported elastase substrate, but had no detectable activity towards several other substrates of these proteinases or of trypsin. The pH optimum of the enzyme was between pH 8.0 and 9.5 and it was unstable at pH values below 7. Maximal activity of the enzyme when assayed against sAAPFpna was centered between 45 and 50°C. Calcium binding stabilized the cod collagenase against thermal inactivation, but even in the presence of calcium, the enzyme was unstable at temperatures above 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号