首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the effect of beta-mercaptoethanol (BME) during in vitro maturation (IVM) of pig oocytes on in vitro fertilization (IVF) parameters, intracellular glutathione (GSH) concentration, subsequent embryo development and blastocyst cell numbers. Cumulus-oocyte complexes were cultured in North Carolina State University (NCSU)-23 medium containing porcine follicular fluid, cysteine, hormonal supplements and 0 to 50 microM BME for 20 to 22 h. They were then cultured in the same medium but without hormonal supplements for an additional 20 to 22 h. After culture, cumulus-free oocytes were coincubated with frozen-thawed spermatozoa for 5 to 6 h. Putative embryos were transferred to NCSU-23 containing 0.4% BSA and cultured for 144 h (Experiment 1). In comparisons between the presence or absence of BME, no differences were observed in fertilization parameters. At 48 h, no mean differences were found in cleavage rates. However, at 144 h, compared with no addition (26%), the presence of 12.5 and 25 microM BME increased (P < 0.05) the proportion of blastocysts in a dose-dependent manner (34 and 41%). Further increase from 25 to 50 microM BME reduced (P < 0.05) the blastocyst development rate. Blastocysts derived from oocytes matured with 25 microM BME had the highest (P < 0.05) trophectoderm (TE) and total cell numbers. No difference was found in inner cell mass (ICM) cells among treatments. In Experiment 2, after IVM, oocytes were fixed to analyze the GSH concentration. Compared to no addition, a higher (P < 0.01) level of GSH was found in oocytes matured with 25 microM BME. Compared with 25 microM BME, GSH was low (P < 0.05) at 50 microM BME. The results show that at certain concentrations BME in IVM medium has beneficial effects on subsequent embryo development, and is correlated with intracellular GSH level in pig oocytes.  相似文献   

2.
This study evaluated the effect of adding reduced glutathione (GSH) during sperm washing and insemination on the subsequent fertilization dynamics and development of IVM porcine oocytes. Follicular oocytes were matured in vitro in NCSU 23 medium with porcine follicular fluid, cysteine and hormone supplements for 22 h. They were then matured in the same medium but without hormones for another 22 h. Matured oocytes were stripped of cumulus cells and co-incubated with frozen-thawed spermatozoa for 5 h. Putative embryos were cultured in NCSU 23 with BSA for either 7 h to examine fertilization parameters or 6 d to evaluate cleavage (2 d) and blastocyst rates. In Experiment 1, GSH was added to the insemination medium at 0, 0.125, 0.25 or 0.5 mM. The presence of GSH during insemination did not affect (P>0.05) rates of penetration, polyspermy, male pronuclear formation or cleavage, but did increase (P<0.05) blastocyst formation rates when added at concentrations of 0.125 (36%) and 0.25 mM (34%) compared with that of the control (0 mM; 19%). However, the numbers of inner cell mass and trophectoderm cells of blastocysts were unaffected by GSH treatment (P>0.05). The presence of GSH during insemination was found not to significantly increase intracellular glutathione concentrations of oocytes (P>0.05). In Experiment 2, addition of GSH (0.25 mM) during sperm washing did not affect cleavage or blastocyst formation rates or cell numbers (P>0.05). In conclusion, the presence of GSH during insemination improves the developmental competence of IVM pig oocytes in a dose-dependent manner.  相似文献   

3.
The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, beta-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 microM BME, 0.5 microgram/ml LH, 0.5 microgram/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5-6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78-89%). The mean differences in penetration rate (69-77%), polyspermy rate (31-40%), male pronuclear formation rate (93-96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32-39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13-15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.  相似文献   

4.
Cysteamine when added during in vitro maturation (IVM) or in vitro embryo culture (IVC) stimulates glutathione (GSH) synthesis and improves embryo developmental rates. This suggests that GSH synthesis is decreased in the in vitro produced embryo. The present study was carried out to evaluate if addition of cysteamine to culture medium at the same time, during IVM and IVC of bovine oocytes, may promote an overall improvement on the developmental rate and embryo quality. Oocytes were matured in TCM 199 supplemented with 10% (v/v) fetal calf serum, hormones, and 0 or 100 microM of cysteamine for 24 hr. After IVM, the oocytes were fertilized (day 0). Day 2 embryos (2-8 cell) were washed and transferred to fresh IVC medium supplemented with 0, 25, 50, or 100 microM of cysteamine and cultured for 48 hr. After this, embryos were cultured in IVC medium without cysteamine until day 8 of IVC. In the present study, we confirmed our previous results by demonstrating that the percentage of embryos that developed to the blastocyst stage was significantly higher (P < 0.05) when 100 microM of cysteamine was added during IVM, and this was further improved when 100 and 50 microM of cysteamine where present during IVM and IVC, respectively (P < 0.05). After cryopreservation, no differences were observed on embryo development, but a significant increase on embryo hatching was found between unsupplemented and supplemented oocytes with 100 and 50 microM of cysteamine during IVM and IVC, respectively (P < 0.05). We can conclude that GSH synthesis stimulation during bovine IVM with cysteamine, concomitant with GSH stimulation during IVC, will be a useful and simple tool for increasing the efficiency of in vitro bovine embryo production.  相似文献   

5.
The low number of embryos produced from in vitro matured, fertilized, and cultured (IVM-IVF-IVC) oocytes of prepubertal goat is mainly due to a low incidence of sperm head decondensation at fertilization (Martino et al., 1995: Theriogenology 43:473-485; Mogas et al., 1997: Theriogenology 48:815-829). Thiol compounds stimulate glutathione (GSH) synthesis and improve the rates of male pronucleus (MPN) formation and embryo development. The present study was carried out to determine whether supplementation of the IVM medium with 100 microM of cysteamine, 100 microM of beta-mercaptoethanol, 0.57 mM of cysteine, and 0.57 mM cystine might improve the embryo development and intracellular GSH level of prepubertal goat oocytes. After 27 hr post IVM, a sample of oocytes was frozen and the intracytoplasmic GSH content was evaluated by spectrophotometry. IVM-oocytes were inseminated with fresh semen and cultured in SOF medium. Only the addition of cysteamine to IVM media significantly improved the percentage of the morula plus blastocyst yield compared to the control group (oocytes matured in absence of thiol compounds) (22.2 vs. 6.4%, respectively; P < 0.05). The percentage of expanded blastocysts in cysteamine and control groups was 13.0 and 2.6%, respectively, and the mean cell number per blastocyst was 86.8 and 60.5, respectively. None of the other thiol compounds studied significantly improved the percentage of embryos obtained. It has been demonstrated that prepubertal goat oocytes synthesize GSH during IVM and that thiol compounds increase this GSH synthesis. In conclusion, only the addition of 100 microM of cysteamine to the maturation medium improves embryo development from prepubertal goat oocytes although all the thiol compounds used in this study increased intracellular GSH content.  相似文献   

6.
The effects of estrous cow serum (ECS), bovine oviduct epithelial cells (BOEC), and bovine granulosa cells (GC) on in vitro maturation (IVM) of immature oocyte-cumulus complexes (OCCs) were evaluated. Selected OCCs were cultured for 24 to 26 h in microdroplets of culture medium (CM; TCM 199 + 25 mM HEPES + 100 mug gentamicin sulfate/ml) or in CM medium supplemented or conditioned with 20% ECS, BOEC +/- 20% ECS or GC + 20% ECS. Supplemented media were incubated for 2 h before addition of OCCs, whereas media were conditioned by incubation with 20% ECS or BOEC +/- 20% ECS for 6 d, or with 20% ECS +/- GC for 24 or 48 h before addition of OCCs. The developmental competence of oocytes after TVM was assessed by insemination with glass wool separated, frozen-thawed bovine spermatozoa in microdroplets of modified medium (TALP) containing heparin (5 mug/ml) and BOEC for 18 h. The presumptive zygotes were cultured in microdroplets of CM medium + 20% ECS + BOEC for 7 to 9 d to assess embryo development to morula and blastocyst stages. The percentages of OCCs undergoing IVM (85 to 94%) and in vitro fertilization (IVF) (66 to 80%) were high, irrespective of the IVM conditions. Only after the IVM of OCCs in CM medium alone was the percentage of oocytes undergoing IVF significantly lower (66%; P<0.05). The proportion of IVF oocytes developing to blastocysts with a normal complement of cells (126 to 138) increased significantly (P<0.05) when the OCCs were matured in supplemented or conditioned CM medium containing ECS and/or somatic cells (18 to 28%) compared with those in CM medium alone (9%). When the CM medium was supplemented or conditioned with GC + 20% ECS, the proportion of fertilized oocytes developing to blastocysts increased significantly (28%; P<0.05). These results indicate that the potential of immature OCCs to be fertilized and to complete embryonic development to the blastocyst stage in vitro is enhanced by maturation in CM medium containing 20% ECS and/or BOEC or GC.  相似文献   

7.
This study was conducted to improve in vitro production of embryos from domestic cats using TCM-199 as an IVM medium. The time sequence of nuclear maturation and the optimal timing of in vitro insemination were examined. Most oocytes were at the germinal vesicle stage immediately after collection; however, 8.3% had already resumed meiosis before IVM culture. After 30 h of IVM culture, the percentage of oocytes at metaphase II (MII) reached a peak (75.5%) and did not change (P>0.05) from 30 to 48 h after IVM culture. The percentage of oocytes with two pronuclei was higher (P<0.05) for oocytes matured for 30 and 36 h (38.2 and 33.0%, respectively) than for those after IVM culture for only 24 h (18.5%). Total sperm penetration rate was highest (P<0.05) for oocytes that had been matured for 30 h (46.1%). After 30 h of IVM and 18 h of IVF culture, 66.3 and 24.8% of inseminated oocytes had cleaved and developed to the blastocyst stage, respectively. We concluded that IVM of feline oocytes for 30 h in TCM-199 resulted in optimal nuclear maturation and sperm penetration.  相似文献   

8.
The present study was carried out to establish porcine defined IVP. In Experiments 1 and 2, we investigated the efficacy of additional 0.6 mM cystine and/or 100 microM cysteamine (Cys) to a defined TCM199 maturation medium with regard to the intracellular glutathione (GSH) concentration and the developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The control medium was a modified TCM199 containing 0.05% (w/v) polyvinyl alcohol (PVA). Cys and/or cystine were added to the control medium. The control group and immature oocytes (presumptive germinal vesicle oocytes; GV) were prepared for GSH assay. In Experiment 3, the efficacy of epidermal growth factor (EGF) addition to a modified porcine zygote medium (mPZM) for in vitro culture (IVC) medium was investigated on embryonic development and the mean cell number of blastocysts following ICSI. As a positive or negative control, 0.3% BSA (mPZM-3) or 0.3% PVA (mPZM-4), respectively, was added to the base medium. The defined IVC medium was supplemented with 5 or 10 ng/ml EGF. In Experiment 1, no significant difference was found in the rates of cleavage (31.4-64.3%) and blastocyst formation (6.5-22.9%) among the treatment and control groups. The mean cell numbers per blastocyst ranged from 30 to 48 among the groups without significant differences. However, in Experiment 2, the intracellular GSH concentrations in the oocytes cultured in the medium supplemented with 100 microM Cys (9.6 pmol/oocyte) or Cys + cystine (9.9 pmol/oocyte) were significantly (p < 0.05) higher than the control (2.5 pmol/oocyte) and 0.6 mM cystine (6.5 pmol/oocyte) groups, but not different from the GV group (9.0 pmol/oocyte). The GSH concentration in the cystine group was also significantly (p < 0.05) higher than that in the control group, but not different from the GV group. In Experiment 3, the rates of cleavage and blastocyst formation and the mean cell numbers of blastocysts were not significantly different among the groups. However, the addition of 5 ng/ml EGF into the mPZM-4 resulted in a significantly (p < 0.05) higher blastocyst rate per cleaved embryo than the other two defined groups (mPZM-4 + 5 ng/ml: 48.6%, mPZM-4 and mPZM-4 +10 ng/ml: 23.4% and 23.1%, respectively).The present results indicate that the addition of Cys to a defined medium for in vitro maturation (IVM) of porcine oocytes increases intracellular GSH concentration. Further addition of cystine into the IVM medium containing 100 microM Cys is not necessary and TCM199 plus Cys (100 microM) could be used as a defined IVM medium for porcine oocytes. The addition of 5 ng/ml EGF to a defined IVC medium has enhanced subsequent development after ICSI. This study shows that porcine blastocysts can be produced by defined media throughout the steps of IVP (IVM, ICSI and IVC).  相似文献   

9.
Kishida R  Lee ES  Fukui Y 《Theriogenology》2004,62(9):1663-1676
To establish a defined in vitro maturation culture system for porcine oocytes, we examined the effects of adding cysteine (Cys) and epidermal growth factor (EGF) to the maturation medium. Furthermore, to evaluate cytoplasmic maturation, we investigated GSH concentrations and embryo development after intracytoplasmic sperm injection (ICSI). The basic media for IVM were modified TCM199 containing 10% newborn calf serum (NBCS) or 0.1% polyvinyl alcohol (PVA), supplemented with amino acids. Adding EGF (10 ng/ml) or EGF + Cys (0.57 mM) to the defined medium (0.1% PVA + amino acids) increased (P < 0.05) the rate of nuclear maturation relative to the defined medium (without these additives). After ICSI, oocytes matured in a medium supplemented with NBCS, Cys and EGF had a higher (P < 0.05) rate of pronuclear formation rate than oocytes matured in the defined IVM medium. Although there was no significant difference in cleavage rates between NBCS- and PVA-containing media supplemented with both Cys and EGF, the rate of blastocyst development was lower (P < 0.05) in the defined medium than in the NBCS-containing medium. Intracellular GSH concentrations of oocytes matured in the NBCS- and PVA-containing media supplemented with both Cys and EGF were higher (P < 0.05) than in oocytes matured in PVA alone or in oocytes before maturation. Adding Cys and EGF to a defined medium for porcine IVM improved rates of nuclear maturation and cleaved oocytes following ICSI, probably due to increased GSH concentrations. Also, embryos derived from oocytes matured in the defined medium (with the addition of Cys and EGF) developed into blastocysts after ICSI.  相似文献   

10.
11.
The purpose of this study was to evaluate whether enriching the oocyte in vitro maturation medium with cystine, in the presence of cysteamine, would improve the in vitro embryo production efficiency in buffalo by further increasing the GSH reservoir created by the oocyte during maturation. Cumulus-oocytes complexes were matured in vitro in TCM 199 + 10% FCS, 0.5 microg/ml FSH, 5 microg/ml LH and 1 microg/ml 17beta-estradiol in the absence or presence of cysteamine (50 microM), with or without 0.3mM cystine. In Experiment 1, glutathione content was measured by high-performance liquid chromatography and fluorimetric analysis in representative samples of oocytes matured in the four different experimental conditions. In Experiment 2, oocytes were fixed and stained to assess nuclear maturation and normal pronuclear development following IVM and IVF respectively. In Experiment 3, mature oocytes were in vitro fertilized and cultured to assess development to blastocysts. In all supplemented groups the intracytoplasmic GSH concentration was significantly higher than the control, with the highest GSH levels in oocytes matured in the presence of both thiol compounds (3.6, 4.7, 5.4 and 6.9 picomol/oocyte in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Cystine supplementation of IVM medium, both in the presence or absence of cysteamine, significantly increased the proportion of oocytes showing two normal synchronous pronuclei following fertilization. In all supplemented groups, cleavage rate was significantly improved compared to the control (55, 66.1, 73.5 and 78.4% in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Similarly, blastocyst yield was also increased in the three enriched groups compared to the control (17.1, 23.8, 29.3, 30.9% in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Overall, the addition of cystine to a cysteamine-enriched medium resulted in a significant increase of cleavage rate and transferable embryo yield compared to the medium supplemented with only cysteamine.  相似文献   

12.
We investigated the effects of resveratrol, a phytoalexin with various pharmacologic activities, on in vitro maturation (IVM) of porcine oocytes. We investigated intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, as well as gene expression in mature oocytes, cumulus cells, and in vitro fertilization (IVF)-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 44 h of IVM, no significant difference was observed in maturation of the 0.1, 0.5, and 2.0 μM resveratrol groups (83.0%, 84.1%, and 88.3%, respectively) compared with the control (84.1%), but the 10.0 μM resveratrol group showed significantly decreased nuclear maturation (75.0%) (P < 0.05). The 0.5- and 2.0-μm groups showed a significant (P < 0.05) increase in intracellular GSH levels compared with the control and 10.0 μM group. Intracellular ROS levels in oocytes matured with 2.0 μM resveratrol decreased significantly (P < 0.05) compared with those in the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rates and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) than the control group. Cumulus-oocytes complex treated with 2.0 μM resveratrol showed lower expression of apoptosis-related genes compared with mature oocytes and cumulus cells. Cumulus cells treated with 2.0 μM resveratrol showed higher (P < 0.05) expression of proliferating cell nuclear antigen than the control group. IVF-derived blastocysts derived from 2.0 μM resveratrol-treated oocytes also had less (P < 0.05) Bak expression than control IVF-derived blastocysts. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating gene expression during oocyte maturation.  相似文献   

13.
This study was conducted to evaluate the effect of oxygen tension during IVM and/or IVC on developmental competence of porcine follicular oocytes. Prospective, randomized experiments were designed, and oocytes were matured, inseminated and cultured in vitro in the designated condition. In experiment 1, either high (20%) or low (7%) oxygen tension was used for IVM. The high oxygen significantly improved blastocyst formation (23% versus 13%; P<0.01) after IVF than the low oxygen. Such treatment, however, did not significantly (P>0.05) improve the rates of nuclear maturation (89% in each treatment), sperm penetration (62-72%), monospermic fertilization (56-67%), pronuclear formation (90-96%), cleavage (49-53%) and blastocyst cell number (31-32 cells). In experiment 2, the combined effect of oxygen tension during IVM and IVC of embryos was evaluated by a 2 x 2 factorial arrangement. Again, the high oxygen tension during IVM supported blastocyst formation more efficiently (P<0.01) than the low oxygen, and this was independent of oxygen tension during IVC (26-28% versus 15-16%). In oocytes matured under the high oxygen, a tendency to increase blastomere number (P=0.0630) was found, when the low oxygen was used for IVC after insemination (39-45 cells/blastocyst). In conclusion, the use of high oxygen tension (20% maintained by exposure to 5% CO2 in air) for IVM of porcine oocytes promoted blastocyst formation in vitro.  相似文献   

14.
The present study was conducted to examine the effect of ascorbic acid 2-O-alpha-glucoside (AA-2G), a stable ascorbate derivative, on the sustenance of cytoplasmic maturation responsible for subsequent developmental competence after in vitro fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured for 44 h in North Carolina State University 37 medium supplemented with cysteine, gonadotropins, 10% (v:v) porcine follicular fluid, and 0-750 microM AA-2G. When oocytes were matured in the presence of 250 microM AA-2G, their ability to promote transformation of the sperm nucleus into the male pronucleus (MPN) was strongly enhanced after in vitro fertilization. Similarly, the presence of 25 microM beta-mercaptoethanol (ME) enhanced the degree of progression to MPN of penetrated sperm by associating with the increase in intracellular glutathione (GSH) content. Although the AA-2G treatment during oocyte maturation showed no influence on the GSH concentration, significantly higher levels of ascorbic acid (AsA) were detected in these oocytes than in those oocytes cultured without AA-2G (P < 0.05). The length of DNA migration encompassed by reactive oxygen species (ROS), generated by the hypoxanthine-xanthine oxidase system, was not increased in the oocytes treated with AA-2G, whereas ME treatment could not block the DNA damage by ROS. These findings indicate that AA-2G in maturation medium can potentiate the cellular protection of oocytes against oxidative stress by continuously supplying AsA. The proportion of development to the blastocyst stage after in vitro insemination was significantly increased in oocytes matured with AA-2G (P < 0.05), and this proportion showed no difference in comparison with that of oocytes treated with ME. These findings suggest that a critical concentration of intracellular AsA, supplied by AA-2G during in vitro maturation, plays an important role in supporting the cytoplasmic maturation responsible for developmental competence after fertilization by prevention of oxidative stress against porcine oocytes.  相似文献   

15.
Cysteamine and beta-mercaptoethanol supplementation of in vitro maturation (IVM) medium has been found to increase intracellular glutathione (GSH) content in oocytes and to improve embryo development and quality in several species. The objective of this experiment was to study the effect of cysteamine and beta-mercaptoethanol added during IVM of sheep oocytes on GSH synthesis and embryo development. Furthermore, we examined if cysteamine addition (hence GSH production) had an effect on the reduction of the intracellular peroxide content. We matured oocytes obtained from ovaries collected at a slaughterhouse in vitro in the presence of 0, 50, 100, and 200 microM cysteamine (Experiment 1) or with 0, 50, 100, and 200 microM beta-mercaptoethanol (Experiment 2). Following fertilization and embryo development, there was a increasing level of morula and blastocyst development in the presence of cysteamine, reaching significance in the presence of 200 microM (P < 0.05). However, beta-mercaptoethanol did not influence on the rate of embryo development. GSH levels were measured in oocytes matured in the presence or absence of 200 microM cysteamine (Experiment 3) or 50 microM beta-mercaptoethanol (Experiment 4), with or without buthionine sulfoximide (BSO), an inhibitor of GSH synthesis. Results demonstrated that for both cysteamine and beta-mercaptoethanol, intracellular GSH levels increased against control values (P < 0.01), which was abolished in the presence of BSO. Finally, we reduced intracellular peroxide levels, as measured by the relative fluorescence of the intracellular peroxide probe, carboxy-H2DCFDA, in the presence of either 200 microM cysteamine or 50 microM beta-mercaptoethanol (Experiment 5). These results demonstrate that cysteamine, but not beta-mercaptoethanol, when present during IVM, stimulates sheep embryo development; both cysteamine and beta-mercaptoethanol stimulate GSH synthesis; the increase in intracellular GSH is associated with a decrease in peroxide levels within oocytes.  相似文献   

16.
Yang BK  Yang X  Foote RH 《Theriogenology》1993,40(3):521-530
Growth factors were studied as a means of increasing the development of in vitro matured (IVM) and in vitro fertilized (IVF) oocytes into morulae or blastocysts. Cell numbers of blastocysts were also counted. In Experiment 1, 2- to 8-cell embryos derived from bovine IVM/IVF oocytes were randomly allotted to one of 3 culture groups: a) synthetic oviduct fluid (SOF); b) SOF + 10 ng/ml epidermal growth factor (EGF); or c) SOF + 100 ng/ml EGF; all 3 culture media contained 10% fetal bovine serum. Culture resulted in 12%, 23% and 14% (P>0.05), respectively, developing into morulae and blastocysts. In Experiment 2, 5 ng/ml of transforming growth factor B (1) (TGFB (1)) added to CR(1aa) medium containing BSA increased the percentage of blastocysts to 56% vs 40% for the control (P<0.05). In Experiment 3, EGF and TGFB(1), added singly and in combination to CR(1aa) did not produce a synergistic effect. More embryos developed into morulae and blastocysts (45%) in a bovine oviduct epithelial co-culture than in any other treatment except in CR(1aa) + EGF (34%; P>0.05). In Experiment 4, 0, 1 and 5 ng/ml of platelet derived growth factor (PDGF) added to CR(1aa) yielded 39%, 70% and 52% morulae and blastocysts, respectively (P<0.05). Cell number was not increased, indicating that growth factors can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number.  相似文献   

17.
To investigate the effects of water-soluble vitamin supplementation for IVM/IVC of porcine oocytes and evaluate maturation and developmental capacity in vitro, porcine cumulus oocyte complexes (COCs) was matured in NCSU-23-based medium with water-soluble vitamins for 44 h and then cultured in PZM-3 for 7 days following activation. The COCs were allocated into five treatment groups and matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, 0.4, and 1x). Metaphase II plates of the cumulus-free oocytes were observed following Hoechest 33258 staining. The COCs were allocated into four treatment groups, matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, and 0.4x) and cultured in PZM-3 following activation. Also, COCS were matured without MEM vitamins and cultured in PZM-3 with various concentrations (control, 0.1, 0.4, 1.0, and 2.0 x) of MEM vitamins. Furthermore, 2 x 2 factorial (IVM/IVC) experiments were performed in IVM medium with or without 0.05 x MEM vitamins and IVC medium with or without 0.4x MEM vitamins to examine the in vitro development of parthenogenetic embryos. Maturation rates of COCs treated with MEM vitamins did not differ significantly among groups. However, compared to the control group, oocytes matured with the addition of 0.05 x MEM vitamins developed to blastocysts at a higher percentage (P<0.05) following activation and culture in PZM-3 without MEM vitamins. Total cell number of blastocysts was significantly higher in the 0.05 x group. Addition of 0.4x MEM vitamins decreased (P<0.05) cleavage and blastocyst developmental rates compared with 0.05 x MEM vitamins-treated group. In contrast, addition of vitamins to PZM-3 medium for in vitro culture of activated porcine oocytes did not affect development. In conclusion, addition of a low concentration of MEM vitamins to IVM medium for porcine oocytes enhanced subsequent development and improved embryo quality.  相似文献   

18.
Maintaining oocytes at the germinal vesicle (GV) stage in vitro may permit enhanced acquisition of the developmental competence. The objective of the current study was to evaluate the nuclear and cytoplasmic maturation in vitro of porcine oocytes after pretreatment with S-roscovitine (ROS). Cumulus oocyte complexes (COC) were treated with 50 microM ROS for 48 h and then matured for various lengths of time in a conventional step-wise in vitro maturation (IVM) system by using dibutyryl cyclic AMP. The COC that were matured in the same system for 44 h without pretreatment with ROS were used as the control group. At various periods after the start of IVM, oocytes were assessed for the meiotic stages and subjected to in vitro fertilization (IVF) with fresh spermatozoa. The ROS treatment inhibited GV breakdown of 94.4% oocytes, with the majority arrested at the GV-I stage (67.4%). Maximum maturation rate to the metaphase-II stage after ROS treatment was achieved by 44 h of IVM (92.1%) and no differences were observed with control oocytes (95.0%). Penetration rate was correlated to the maturation rate. The duration of IVM had no effects on polyspermy and male pronuclear (MPN) formation rates at 8 h post insemination (hpi), whereas both rates increased at 22 hpi. Direct comparison with controls assessed at 22 hpi confirmed a lesser MPN formation in ROS-treated oocytes (73.7% compared with 53.6%). Glutathione (GSH) concentrations were less in oocytes treated with ROS than in control oocytes (5 compared with 7.7 pmol/oocyte) as well as blastocyst rate (22.0% compared with 38.1%, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pretreated with ROS for 48 h did not equal that of control oocytes in the current IVM system.  相似文献   

19.
Current methods for detecting complete oocyte maturation and developmental competence are inadequate. The objectives of this study were to (1) examine the relationship between cat oocyte energy metabolism and development in vitro after fertilization and (2) determine if cumulus cell metabolism could be used to predict development of individual oocytes after fertilization in vitro. The hanging drop method was used to assess metabolism of three different types of cat oocytes: immature (IMO), in vitro matured (IVM), and in vivo matured (IVOM). Stage of oocyte nuclear maturation or developmental competence was assessed after metabolic analysis. Glycolysis and oxidation of glucose, glutamine, palmitate, and lactate increased with the resumption of oocyte meiotic maturation (P<0.05). Pyruvate was the preferred substrate, but uptake was not linked to maturation. IVM oocytes had impaired glucose and palmitate metabolism compared to IVOM oocytes (P<0.05). Oocyte glycolytic activity and oocyte glucose oxidation correlated well with embryo development after insemination in vitro (P<0.05). Furthermore, oocytes that had similar glucose metabolism and that were grouped together for culture on this basis had higher (P<0.05) overall rates of development than oocytes grouped randomly. There was no correlation (P>0.05) between cumulus cell metabolism and individual oocyte development after in vitro fertilization. The data reveal that energy metabolism is linked to oocyte maturation in the cat and that glucose metabolic activity can indicate those oocytes most likely to fertilize and develop in vitro. Measuring cumulus cell metabolism does not accurately predict individual oocyte development after insemination in vitro.  相似文献   

20.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号