首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fluorimetry and spectrophotometry have been used to study the binding of dimethyl, dipropyl, dibutyl and diphenylnitrosamine to nicotinic acetylcholine receptor isolated, and purified, from Torpedo fuscomaculata. Scatchard analysis indicates that all four ligands are true agonists of the receptor exhibiting positive cooperative binding with the existence of more than one class of binding site. The number of binding sites for the nitrosamines approximates 2. Diphenylnitrosamine binds to the receptor more tightly at low concentrations (Kd1 = 1.3 microM) than the aliphatic nitrosamine (Kd1 = 8-12 microM). Yet at high concentrations all nitrosamines behaved with similar Kd values (27-38 microM).  相似文献   

2.
Degradation of N-Nitrosamines by Intestinal Bacteria   总被引:4,自引:1,他引:4       下载免费PDF全文
A major proportion of bacterial types, common in the gastrointestinal tract of many animals and man, were active in degrading diphenylnitrosamine and dimethylnitrosamine, the former being degraded more rapidly than the latter. At low nitrosamine concentrations (<0.05 μmol/ml), approximately 55% of added diphenylnitrosamine, 30% of N-nitrosopyrrolidine, and 4% of dimethylnitrosamine were degraded. The route of nitrosamine metabolism by bacteria appears to be different from that proposed for breakdown by mammalian enzyme systems in that carbon dioxide and formate were not produced. In bacteria, the nitrosamines were converted to the parent amine and nitrite ion and, in addition, certain unidentified volatile metabolites were produced from dimethylnitrosamine by bacteria. The importance of bacteria in reducing the potential hazard to man of nitrosamines is discussed.  相似文献   

3.
Kinetic analysis has shown that isoquinoline, papaverine and berberine act as reversible competitive inhibitors to muscle lactate dehydrogenase and mitochondrial malate dehydrogenase with respect to the coenzyme NADH. The inhibitor constants Ki vary from 7.5 microM and 12.6 microM berberine interaction with malate dehydrogenase and lactate dehydrogenase respectively to 91.4 microM and 196.4 microM with papaverine action on these two enzymes. Isoquinoline was a poor inhibitor with Ki values of 200 microM (MDH) to 425 microM (LDH). No inhibition was observed for both enzymes in terms of their respective second substrate (oxaloacetic acid - malate dehydrogenase; pyruvate - lactate dehydrogenase). A fluorimetric analysis of the binding of the three alkaloids show that the dissociation constants (Kd) for malate dehydrogenase are 2.8 microM (berberine), 46 microM (papaverine) and 86 microM (isoquinoline); the corresponding values for lactate dehydrogenase are 3.1 microM, 52 microM and 114 microM. In all cases the number of binding sites averaged at 2 (MDH) and 4 (LDH). The binding of the alkaloids takes place at sites close to the coenzyme binding site. No conformational non equivalence of subunits is evident.  相似文献   

4.
Based on the proposal that ribonucleases cleave the RNA phosphodiester bond with a mechanism involving pentacovalent phosphorous as transition state, complexes of guanosine and inosine with vanadate-(IV, V), molybdate-(VI), tungstate-(VI), chromate-(VI) and hexacyanochromate-(III) were synthesized and probed as inhibitors of recombinant ribonuclease T1, obtained from an E. coli. overproducing strain. The apparent dissociation constants of these inhibitors and RNase T1, as determined by Michaelis-Menten kinetics, vary between 0.5-0.9 microM and indicate very strong binding, 100- to 1000-fold stronger than the binding of guanosine (Kd = 545 microM) and inosine (Kd = 780 microM), and 50-100-fold stronger than the binding of the product 3' GMP (Kd = 55 microM). Therefore the synthesized inhibitors may be considered as genuine transition state analogs for the enzyme.  相似文献   

5.
Sphingosine inhibited [3H]methylhistidine-thyrotropin-releasing hormone (MeTRH) binding to intact GH3 cells and to GH3 membranes. This inhibition was dependent on the concentration of sphingosine and on the ratio of sphingosine to cell number (or membrane protein) and was partly reversed by washing. In intact cells, the IC50 was 63 microM (1.8 X 10(6) cells/ml; 2 nM MeTRH), and 100 microM sphingosine was found, by Scatchard analysis, to increase the apparent dissociation constant (Kd) from 1.1 +/- 0.3 to 6.5 +/- 2.3 nM and to decrease the maximal binding capacity (Bmax) to 41 +/- 9.5% of control. Kinetic analysis showed that the major effect of sphingosine on Kd was due to a marked decrease in the apparent association rate constant for MeTRH from 2.5 +/- 0.4 X 10(5) M-1 s-1 to 0.10 +/- 0.015 X 10(5) M-1 s-1. At 100 microM, sterylamine was as effective as sphingosine in inhibiting MeTRH binding, whereas sphinganine was less effective, and psychosine and steroylsphingosine were without effect. The following observations show that sphingosine inhibition of MeTRH binding did not involve protein kinase C. The IC50 for sphingosine inhibition of MeTRH binding was the same in GH3 cells that had been incubated with 1 microM phorbol 12-myristate 13-acetate for 16 h, to "down-regulate" protein kinase C, as in control cells. Sphingosine inhibited MeTRH binding to membranes isolated from GH3 cells that contain very little protein kinase C activity. In GH3 membranes, 100 microM sphingosine increased the Kd for MeTRH from 3.4 +/- 0.1 to 13 +/- 3.1 nM but did not significantly decrease Bmax (12 +/- 5.0% of control, p greater than 0.05). And, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, an inhibitor of protein kinase C, failed to decrease MeTRH binding to intact GH3 cells or to membranes, and did not interfere with the effects of sphingosine. These data show that sphingosine and its analogs have complex actions to inhibit MeTRH binding to GH3 cells, at least some of which are independent of protein kinase C, and thereby demonstrate that sphingolipids cannot be used as specific inhibitors of protein kinase C.  相似文献   

6.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

7.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

8.
The characteristics of atrial natriuretic factor (ANF) receptors where studied in rat retinal particulate preparations. Specific 125I-ANF binding to retinal particulate preparations was greater than 90% of total binding and saturable at a density (Bmax) of 40 +/- 8 fmol/mg protein with an apparent dissociation constant (Kd) of 6.0 +/- 2.0 pM (n = 3). Apparent equilibrium conditions were established within 30 min. The Kd value of 125I-ANF binding calculated by kinetic analysis was 4.0 pM. The Bmax of 60 +/- 10 fmol/mg protein and the Kd of 5 +/- 2 pM, calculated by competition analysis, were in close agreement with the values obtained from Scatchard plots or kinetic analysis. The 125I-ANF binding to retinal particulate preparations was not inhibited by 1 microM concentration of somatostatin, vasopressin, vasoactive intestinal peptide, adrenocorticotropin, thyrotropin releasing hormone, or leu-enkephalin. The rank order of potency of the unlabelled atrial natriuretic peptides for competing with specific 125I-ANF (101-126) binding sites was rANF (92-126) greater than rANF (101-126) greater than rANF (99-126) greater than rANF (103-126) greater than Tyro-Atriopeptin I greater than hANF (105-126) greater than rANF (1-126). Similar results have been obtained in peripheral tissues and mammalian brain, indicating that central and peripheral ANF-binding sites have somewhat similar structural requirements. Affinity cross-linking of 125I-ANF to retinal particulate preparations resulted in the labelling of two sites of molecular weight 140 and 66 kDa, respectively. This demonstration of specific high-affinity ANF receptors suggests that the peptide may act as a neurotransmitter or neuromodulator in the retina.  相似文献   

9.
Interaction of non-steroidal antiestrogens with dopamine receptor binding   总被引:1,自引:0,他引:1  
The ability of various estrogen antagonists and agonists to compete with [3H]spiroperidol, [3H]domperidone, [3H]dihydroalprenolol, [3H]dihydroergocryptine, [3H]dopamine or [3H]5-hydroxytryptamine for binding to membrane preparations from rat brain tissue was tested. The non-steroidal triphenylethylene-type antiestrogens with an amine side chain--enclomiphene, nitromifene, tamoxifen and zuclomiphene--were found to be competitive inhibitors of [3H]spiroperidol (Kd = 0.12 nM; Bmax = 101 fmol/mg protein) and [3H]domperidone (Kd = 0.62 nM; Bmax = 86 fmol/mg protein) binding to striatal membranes. The Ki values ranged from 4-12 microM. Estradiol-17 beta (Ki = 480 microM) or diethylstilbestrol (Ki = 63 microM) were much less effective inhibitors exhibiting noncompetitive interaction with the in vitro binding of [3H]spiroperidol. The pharmacological relevance of the antiestrogen interactions with dopamine receptor binding is discussed with respect to adverse effects of the in vivo administered compounds such as nausea and vomiting.  相似文献   

10.
V Fleury  E Anglés-Cano 《Biochemistry》1991,30(30):7630-7638
In the present study we have quantitatively characterized the interaction of purified human Glu- and Lys-plasminogen with intact and degraded fibrin by ligand-binding experiments using a radioisotopic dilution method and antibodies against human plasminogen. A fibrinogen monolayer was covalently linked to a solid support with polyglutaraldehyde and was treated with thrombin or with thrombin and then plasmin to respectively obtain intact and degraded fibrin surfaces. Under these conditions, a well-defined surface of fibrin is obtained (410 +/- 4 fmol/cm2) and, except for a 39-kDa fragment, most of the fibrin degradation products remain bound to the support. New binding sites for plasminogen were detected on the degraded surface of fibrin. These sites were identified as carboxy-terminal lysine residues both by inhibition of the binding by the lysine analogue 6-aminohexanoic acid and by carboxy-terminal end-group digestion with carboxypeptidase B. The binding curves exhibited a characteristic Langmuir adsorption isotherm saturation profile. The data were therefore analyzed accordingly, assuming a single-site binding model to simplify the analysis. Equilibrium dissociation constants (Kd) and the maximum number of binding sites (Bmax) were derived from linearized expression of the Langmuir isotherm equation. The Kd for the binding of Glu-plasminogen to intact fibrin was 0.99 +/- 0.17 microM and for degraded fibrin was 0.66 +/- 0.22 microM. The Kd for the binding of Lys-plasminogen to intact fibrin was 0.41 +/- 0.22 microM and for degraded fibrin was 0.51 +/- 0.12 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

13.
R A Bok  W F Mangel 《Biochemistry》1985,24(13):3279-3286
The binding of human Glu- and Lys-plasminogens to intact fibrin clots, to lysine-Sepharose, and to fibrin cleaved by plasmin was quantitatively characterized. On intact fibrin clots, there was one strong binding site for Glu-plasminogen with a dissociation constant, Kd, of 25 microM and one strong binding site for Lys-plasminogen with a Kd of 7.9 microM. In both cases, the number of plasminogen binding sites per fibrin monomer was 1. Also, a much weaker binding site for Glu-plasminogen was observed with a Kd of about 350 microM. Limited digestion of fibrin by plasmin created additional binding sites for plasminogen with Kd values similar to the binding of plasminogen to lysine-Sepharose. This was predictable given the observations that plasminogen binds to lysine-Sepharose and can be eluted with epsilon-aminocaproic acid [Deutsch, D.G., & Mertz, E.T. (1970) Science (Washington, D.C.) 170, 1095-1096] and that plasmin preferentially cleaves fibrin at the carboxy side of lysyl residues [Weinstein, M.J., & Doolittle, R.F. (1972) Biochim. Biophys. Acta 258, 577-590], because the structures of the lysyl moiety in lysine-Sepharose and of epsilon-aminocaproic acid are identical with the structure of a COOH-terminal lysyl residue created by plasmin cleavage of fibrin. The Kd for the binding of Glu-plasminogen to lysine-Sepharose was 43 microM and for fibrin partially cleaved by plasmin 48 microM. The Kd for the binding of Lys-plasminogen to lysine-Sepharose was 30 microM. With fibrin partially cleaved by plasmin, there were two types of binding sites for Lys-plasminogen, one with a Kd of 7.6 microM and the other with a Kd of 44 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities.  相似文献   

15.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

16.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

17.
[3H]Dihydroalprenolol was used to study beta-adrenergic binding sites in plasma membranes isolated from rabbit liver. Specific binding was measured at 25 degrees C as the difference between total binding and binding in the presence of 2 microM dl-propranolol or 10 microM l-isoproterenol. Binding was saturable and stereoselective. The maximum number of binding sites (Bmax) was 434 +/- 41 fmol/mg of protein. The Kd for this binding as determined by Scatchard analysis was 1.39 +/- 0.09 nM. This value agreed well with the Kd value (1.27 +/- 0.12 nM) determined by kinetic analysis. The potency order for the displacement of bound [3H]dihydroalprenolol was isoproterenol greater than epinephrine greater than norepinephrine, indicative of beta 2-receptors. Use of beta 1- and beta 2-subtype-selective inhibitors also supported the interpretation that the binding characteristics are those of beta 2-receptors. Computer-aided analysis of this inhibition indicated that the beta-receptors in this membrane are predominantly, if not exclusively, of the beta 2-subtype. That these receptors are responsible for mediating catecholamine stimulation of hepatic glycogenolysis was deduced from the inhibition of agonist-stimulated glycogenolysis, in isolated hepatocytes, by beta-receptor subtype-selective antagonists. Thus, the hydrochloride of (t-butylamino-3-ol-2-propyl)oximino-9 fluorene, a beta-antagonist which has higher affinity at beta 2-sites than at beta 1-sites, was 3 orders of magnitude more potent in inhibiting isoproterenol-stimulated glycogenolysis than either atenolol or practolol, both of which are beta 1-selective antagonists. These results resemble the inhibition of [3H]dihydroalprenolol binding in plasma membranes. The glycogenolytic effects of catecholamines occurred with the potency order isoproterenol greater than epinephrine greater than norepinephrine. Thus, both by radioligand binding studies and by metabolic studies, the functional adrenergic receptor in the rabbit liver is shown to be of the beta 2-subtype.  相似文献   

18.
The binding constants of a number of ligands were measured for pancreatic elastase (PE) and anhydro-elastase (AE) in order to assess the contribution of Ser-195 to substrate and inhibitor binding by PE. AE was purified by affinity chromatography on a column containing immobilized turkey ovomucoid inhibitor. The AE had 0.1 +/- 0.1% of the activity of the native enzyme and contained 0.8 +/- 0.06 residue of dehydroalanine per molecule. A difference electron-density map, derived from an X-ray crystallographic analysis of AE, showed that the modified residue was Ser-195. The complexing of 3-carboxypropionyl-Ala-Ala-Ala-p-nitroanilide (SAN) to the active site of AE was also demonstrated by X-ray-diffraction analysis of an AE crystal soaked overnight with substrate. The nitroanilide moiety was not observed in the difference map. AE was shown to bind turkey ovomucoid inhibitor with a dissociation constant (Kd) of 0.3 +/- 0.06 microM compared with 0.10 microM for PE. The Kd of the AE-SAN complex (0.2 mM) was comparable with the Michaelis constant for SAN with PE (1.0 mM). A number of inhibitors, such as elastatinal, which forms a hemiketal adduct with PE, while others such as the beta-lactams, which function as acylators of the active-site serine residue, bound AE with a lower affinity than to PE. The binding of a peptidylchloromethane (acetyl-Ala-Ala-Pro-Ala-CH2Cl) to AE occurs without evidence for alkylation of histidine. The binding constants for benzoisothiazolinone and 3,4-dichloroisocoumarin to PE differed from their binding constants to AE by less than a factor of 4.0-fold. The contribution of the hydroxy group of Ser-195 to the binding of these inhibitors to PE in their non-covalent complexes is relatively small, even though they inactivate PE by an acylation mechanism. These results suggest that the hydroxy group on Ser-195 in PE is of secondary importance in the energetics of ligand binding, in contrast with its essential role in the catalytic properties of the enzyme.  相似文献   

19.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

20.
A mass spectrometric protocol for identifying ligands with a wide range of affinities (3-101 microM) and quantitative spectral analysis for non-covalent interactions have been developed using Src SH2 as a target. Dissociation constants of five compounds, three with a phospho moiety, one with a sulphonic acid group and one with carboxylic acid groups only, were determined using one-ligand one-binding-site, two-ligands one-binding site and one-ligand two-binding-sites models. The Kd values determined by ESI-MS of the three compounds containing the phospho moiety (3.2-7.9 microM) were comparable to those obtained from a solution equilibrium fluorescence polarization assay. The compound with a sulphonate group is a much weaker binding ligand (Kd=101 microM by ESI, >300 microM by FP) towards the Src SH2 protein. Two complexes with different stoichiometric ratios 1:1 and 2:1 (ligand-protein) were observed by ESI-MS for the ligand GIXXX630X. Analysis of binding isotherms indicated the presence of two binding sites for the ligand with Kd values of 9.3 and 193 microM. These data confirmed that, for these polar compounds, non-covalent ESI-MS can measure affinity which very closely reflects the affinity measured under true solution equilibrium conditions. ESI-MS has several key advantages over many solution methods: it can identify the existence of and measure the affinity of complexes other than simple 1:1 ligand-enzyme complexes. Moreover, ESI-MS competition experiments can be readily performed to yield data on whether two ligands bind simultaneously or competitively at the same time as measuring the affinity of the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号