首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eklund M  Axelsson L  Uhlén M  Nygren PA 《Proteins》2002,48(3):454-462
Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.  相似文献   

2.
CD28 is one of the key molecules for co-stimulatory signalling in T cells. Here, novel ligands (affibodies) showing selective binding to human CD28 (hCD28) have been selected by phage display technology from a protein library constructed through combinatorial mutagenesis of a 58-residue three-helix bundle domain derived from staphylococcal protein A. Analysis of selected affibodies showed a marked sequence homology and biosensor analyses showed that all investigated affibodies bound to hCD28 with micromolar affinities (KD). No cross-reactivity towards the related protein human CTLA-4 could be observed. This lack of cross-reactivity to hCTLA-4 suggests that the recognition site on hCD28 for the affibodies resides outside the conserved MYPPPYY motif. The apparent binding affinity for hCD28 could be improved through fusion to an Fc fragment fusion partner, resulting in a divalent presentation of the affibody ligand. For the majority of selected anti-CD28 affibodies, in co-culture experiments involving Jurkat T-cells and CHO cell lines transfected to express human CD80 (hCD80) or LFA-3 (hLFA-3) on the cell surface, respectively, pre-incubation of Jurkat cells with affibodies resulted in inhibition of IL-2 production when they were co-cultured with CHO (hCD80+) cells, but not with CHO (hLFA-3+) cells. For one affibody variant denoted Z(CD28:5) a clear concentration-dependent inhibition was seen, indicating that this affibody binds hCD28 and specifically interferes in the interaction between hCD28 and hCD80.  相似文献   

3.
A new method for specific detection of proteins based on fluorescence resonance energy transfer (FRET) using affinity proteins (affibodies) derived from combinatorial engineering of Staphylococcal protein A has been developed. Antiidiotypic affibody pairs were used in a homogeneous competitive binding assay, where the idiotypic, target-specific affibody was labeled with fluorescein and the antiidiotypic affibody was labeled with tetramethylrhodamine. Intermolecular FRET between the two fluorescent probes was observed in the antiidiotypic affibody complex, but upon addition of target protein the antiidiotypic affibody was displaced, which was monitored by a shift in the relative emission of the donor and acceptor fluorophores. The feasibility of the system was demonstrated by the detection of IgA and Taq DNA polymerase with high specificity, using two different antiidiotypic affibody pairs. Detection of Taq DNA polymerase in 25% human plasma was successfully carried out, demonstrating that the method can be used for analysis of proteins in samples of complex composition.  相似文献   

4.
Affibodies are a group of affinity proteins that are based on a 58-amino-acid residue protein domain derived from one of the IgG-binding domains of staphylococcal protein A. A single human IgA affibody with high IgA affinity has been generated by directed evolution. It remains interesting whether tandem IgA affibody proteins could increase binding capacity. Here, we report the generation of multiple tandem IgA affibodies by directed evolution using a combinatorial phage library displaying the IgA affibody A1 and/or A2 linked with three random amino acids. These affibodies exhibited markedly increased IgA binding capacity, as shown by enzyme linked immunosorbent assay, immunoblotting and surface plasmon resonance assays. We further showed that these tandem IgA affibodies displayed preferential binding to intact IgA molecules compared to individual IgA chain, suggesting intramolecular binding avidity. Our data demonstrates that artificial multiple tandem human IgA affibodies with relevant biological binding avidity were successfully yielded by phage-based molecular evolution. These results have broad implications for the design and development of binding proteins that target important biological molecules.  相似文献   

5.
The use of library technologies for the generation of affinity proteins often includes an affinity maturation step, based on the construction of secondary libraries from which second generation variants with improved affinities are selected. Here, we describe for the first time the affinity maturation of affibody molecules based on step-wise in vitro molecular evolution, involving cycles of error-prone PCR (epPCR) amplification for the introduction of diversity over the entire 58-residue three-helix bundle structure and ribosome display (RD) for the selection of improved variants. The model affibody molecule for the process was Z(RAF322), binding with a 1.9μm equilibrium dissociation constant (K(D)) to human Raf-1 (hRaf-1), a protein kinase of central importance in the MAPK/ERK proliferation pathway. The molecular evolution process was followed on both gene and protein levels via DNA sequencing and a biosensor-based binding analysis of pools of selected variants. After two cycles of diversification and selection, a significant increase in binding response of selected pools was seen. DNA sequencing showed that a dominant alanine to valine substitution had been effectively enriched, and was found in 83% of all selected clones, either alone or in combination with other enriched substitutions. The evolution procedure resulted in variants showing up to 26-fold increases in affinity to the hRaf-1 target. Noteworthy, for the two variants showing the highest affinities, substitutions were also found in affibody framework positions, corresponding to regions of the protein domain not addressed by traditional affibody molecule affinity maturation strategies. Interestingly, thermal melting point (T(m)) analyses showed that an increased affinity could be associated with both higher and lower T(m) values. All investigated variants showed excellent refolding properties and selective binding to hRaf-1, as analysed using a multiplexed bead-based binding assay, making them potentially valuable affinity reagents for cell biology studies.  相似文献   

6.
Factor VIII-specific affibodies were selected from phage displayed libraries constructed by combinatorial mutagenesis of an alpha helical bacterial receptor domain derived from staphylococcal protein A. Bead-immobilized recombinant human factor VIII (rVIII) (80 and 90 kDa chains) protein was used during competitive biopannings in the presence of free 80-kDa chain protein, resulting in the selection of several binders that showed dissociation constants (Kd) in the range 100-200 nM as determined by biosensor analyses. One variant (Z[rVIII:3], 90-kDa chain specific) was further characterized in small-scale affinity chromatography experiments, and showed efficient and selective recovery of biologically active rVIII from Chinese hamster ovary cell supernatant-derived feed stocks. The purity of the enriched rVIII was comparable with rVIII material purified by immunoaffinity chromatography using a 90-kDa chain-specific monoclonal antibody. Interestingly, epitope mapping showed that the monoclonal antibody and the affibody ligand competed for the same or at least overlapping epitopes on rVIII. In addition, the Z[rVIII:3] variant was produced by peptide synthesis with a C-terminal cysteine to enable directed coupling to solid supports. This 59-residue protein was analyzed by circular dichroism and showed a secondary structure content similar to that of the parental Z domain used as scaffold. In biosensor studies, the synthetic affibody was immobilized recruiting the C-terminal cysteine residue, and demonstrated to bind both recombinantly produced and plasma-derived factor VIII. From a secondary library, constructed by re-randomization of relevant positions identified after alignment of the first-generation variants, a panel of affinity-improved second-generation affibodies were selected of which one clone showed a dissociation constant (Kd) for rVIII of 5 nM. Several of these variants also showed higher apparent binding efficiencies towards rVIII when analyzed as immobilized ligands in biosensor experiments. Taken together, the results suggest that affibody ligands produced by bacterial or synthetic routes could be of interest as an alternative to monoclonal antibodies in purification processes or as diagnostic or monitoring tools.  相似文献   

7.
Affinity reagents capable of selective recognition of the different human immunoglobulin isotypes are important detection and purification tools in biotechnology. Here we describe the development and characterization of affinity proteins (affibodies) showing selective binding to human IgA. From protein libraries constructed by combinatorial mutagenesis of a 58-amino-acid, three-helix bundle domain derived from the IgG-binding staphylococcal protein A, variants showing IgA binding were selected by using phage display technology and IgA monoclonal antibodies (myeloma) as target molecules. Characterization of selected clones by biosensor technology showed that five out of eight investigated affibody variants were capable of IgA binding, with dissociation constants (K(d)) in the range between 0.5 and 3 microm. One variant (Z(IgA1)) showing the strongest binding affinity was further analyzed, and showed that human IgA subclasses (IgA(1) and IgA(2)) as well as secretory IgA were recognized with similar efficiencies. No detectable cross-reactivity towards human IgG, IgM, IgD or IgE was observed. The potential use of the Z(IgA1) affibody as a ligand in affinity chromatography applications was first demonstrated by selective recovery of IgA protein from a spiked Escherichia coli total cell lysate, using an affinity column containing a divalent head-to-tail Z(IgA1) affibody dimer construct as a ligand. In addition, efficient affinity recovery of IgA from unconditioned human plasma was also demonstrated.  相似文献   

8.
新型蛋白质配体-亲和体研究进展   总被引:1,自引:0,他引:1  
亲和体(affibody)是一种衍生于葡萄球菌A蛋白B结构域的人工蛋白质分子.B结构域含58个氨基酸,形成3个α螺旋结构,分子质量约为6.5 ku.其中第一及第二螺旋中的13个特定位点的氨基酸对其结构无明显影响,这些位点可被随机突变形成理论上可与任何靶分子结合的亲和体文库.筛选该文库可获得能与某一靶分子特异结合的亲和体.亲和体与靶分子的结合特性与抗体相似,但与抗体相比具有一些独特的优势,如:通过体外筛选即可获得,以化学合成方法或原核表达即可大量制备,分子质量小、在生物体内组织穿透性强、血浆清除率高,理化稳定性好,可以通过交联或融合表达与标记分子(如荧光蛋白、生物素等)结合而不影响其与靶分子的结合能力.亲和体可作为抗体的替代品,用于蛋白质识别、分离及纯化、实验诊断、分子显像及靶向治疗.  相似文献   

9.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

10.
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.  相似文献   

11.
Affibody molecules, 58-amino acid three-helix bundle proteins directed to different targets by combinatorial engineering of staphylococcal protein A, were used as capture ligands on protein microarrays. An evaluation of slide types and immobilization strategies was performed to find suitable conditions for microarray production. Two affibody molecules, Z(Taq) and Z(IgA), binding Taq DNA polymerase and human IgA, respectively, were synthesized by solid phase peptide synthesis using an orthogonal protection scheme, allowing incorporation of selective immobilization handles. The resulting affibody variants were used for random surface immobilization (through amino groups) or oriented surface immobilization (through cysteine or biotin coupled to the side chain of Lys58). Evaluation of the immobilization techniques was carried out using both a real-time surface plasmon resonance biosensor system and a microarray system using fluorescent detection of Cy3-labeled target protein. The results from the biosensor analyses showed that directed immobilization strategies significantly improved the specific binding activity of affibody molecules. However, in the microarray system, random immobilization onto carboxymethyl dextran slides and oriented immobilization onto thiol dextran slides resulted in equally good signal intensities, whereas biotin-mediated immobilization onto streptavidin-coated slides produced slides with lower signal intensities and higher background staining. For the best slides, the limit of detection was 3 pM for IgA and 30 pM for Taq DNA polymerase.  相似文献   

12.
Antibody affinity limits sensitivity of detection in many areas of biology and medicine. High affinity usually depends on achieving the optimal combination of the natural 20 amino acids in the antibody binding site. Here, we investigate the effect on recognition of protein targets of placing an unnatural electrophile adjacent to the target binding site. We positioned a weak electrophile, acrylamide, near the binding site between an affibody, a non-immunoglobulin binding scaffold, and its protein target. The proximity between cysteine, lysine, or histidine on the target protein drove covalent bond formation to the electrophile on the affibody. Covalent bonds did not form to a non-interacting point mutant of the target, and there was minimal cross-reactivity with serum, cell lysate, or when imaging at the cell surface. Electrophilic affibodies showed more stable protein imaging at the surface of mammalian cells, and the sensitivity of protein detection in an immunoassay improved by two orders of magnitude. Thus electrophilic affibodies combined good specificity with improved detection of protein targets.  相似文献   

13.
For efficient generation of high-affinity protein-based binding molecules, fast and reliable downstream characterization platforms are needed. In this work, we have explored the use of staphylococcal cell surface display together with flow cytometry for affinity characterization of candidate affibody molecules directly on the cell surface. A model system comprising three closely related affibody molecules with different affinities for immunoglobulin G and an albumin binding domain with affinity for human serum albumin was used to investigate advantages and differences compared to biosensor technology in a side-by-side manner. Equilibrium dissociation constant (K(D)) determinations as well as dissociation rate analysis were performed using both methods, and the results show that the on-cell determinations give both K(D) and dissociation rate values in a very fast and reproducible manner and that the relative affinities are very similar to the biosensor results. Interestingly, the results also show that there are differences between the absolute affinities determined with the two different technologies, and possible explanations for this are discussed. This work demonstrates the advantages of cell surface display for directed evolution of affinity proteins in terms of fast postselectional, on-cell characterization of candidate clones without the need for subcloning and subsequent protein expression and purification but also demonstrates that it is important to be aware that absolute affinities determined using different methods often vary substantially and that such comparisons therefore could be difficult.  相似文献   

14.
For efficient generation of high-affinity protein-based binding molecules, fast and reliable downstream characterization platforms are needed. In this work, we have explored the use of staphylococcal cell surface display together with flow cytometry for affinity characterization of candidate affibody molecules directly on the cell surface. A model system comprising three closely related affibody molecules with different affinities for immunoglobulin G and an albumin binding domain with affinity for human serum albumin was used to investigate advantages and differences compared to biosensor technology in a side-by-side manner. Equilibrium dissociation constant (KD) determinations as well as dissociation rate analysis were performed using both methods, and the results show that the on-cell determinations give both KD and dissociation rate values in a very fast and reproducible manner and that the relative affinities are very similar to the biosensor results. Interestingly, the results also show that there are differences between the absolute affinities determined with the two different technologies, and possible explanations for this are discussed. This work demonstrates the advantages of cell surface display for directed evolution of affinity proteins in terms of fast postselectional, on-cell characterization of candidate clones without the need for subcloning and subsequent protein expression and purification but also demonstrates that it is important to be aware that absolute affinities determined using different methods often vary substantially and that such comparisons therefore could be difficult.  相似文献   

15.
DNA binding properties of the Type 1 DNA polymerases from Thermus aquaticus (Taq, Klentaq) and Escherichia coli (Klenow) have been examined as a function of [KCl] and [MgCl(2)]. Full-length Taq and its Klentaq "large fragment" behave similarly in all assays. The two different species of polymerases bind DNA with sub-micromolar affinities in very different salt concentration ranges. Consequently, at similar [KCl] the binding of Klenow is approximately 3 kcal/mol (150x) tighter than that of Taq/Klentaq to the same DNA. Linkage analysis reveals a net release of 2-3 ions upon DNA binding of Taq/Klentaq and 4-5 ions upon binding of Klenow. DNA binding of Taq at a higher temperature (60 degrees C) slightly decreases the ion release. Linkage analysis of binding versus [MgCl(2)] reports the ultimate release of approximately 1 Mg(2+) ion upon complex formation. However, the MgCl(2) dependence for Klenow, but not Klentaq, shows two distinct phases. In 10 mm EDTA, both polymerase species still bind DNA, but their binding affinity is significantly diminished, Klenow more than Klentaq. In summary, the two polymerase species, when binding to identical DNA, differ substantially in their sensitivity to the salt concentration range, bind with very different affinities when compared under similar conditions, release different numbers of ions upon binding, and differ in their interactions with divalent cations.  相似文献   

16.
Chaudhuri M  Parris DS 《Journal of virology》2002,76(20):10270-10281
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.  相似文献   

17.
一种构建改形单域抗体的方法   总被引:2,自引:0,他引:2  
为验证一种构建改形单域抗体的实用新方法,与以往方法不同的是,该方法不需要对抗体进行空间结构模拟,以确定人源抗体的FRs接受序列及在人源FRs接受序列中哪些氨基酸残基需要突变,并且该方法将抗体的改形与亲和力成熟于同一过程完成,利用该方法构建了改形抗CD28重链单域抗体,根据一种鼠源抗CD28重链单域抗体的氨基酸序列,于GenBank中查得两条与之最同源的人源抗体序列,利用其中一条的FRs作为改形抗体的主框架进行改形构建,将鼠源抗体的CDR区插入到人源FR区后,对人源FR区的一些氨基酸残基进行替换突变,替换的氨基酸残基数及替换原则主要是根据对查到的人源抗体序列,鼠源抗体序列,以及这些序列与Kabat分类中的种属序列进行的比较,为了增加改形抗体基因的多样性,对要被替换的氨基酸残基在基因合成中采用简并的方式,使要被替换的氨基酸残基和替换的氨基酸残基都有机会出现,二者出现的几率各为50%,同时,在将大小不同的合成核苷酸片段采用重叠PCR扩增以获得完整改形抗体基因时,采用高Mg^2 浓度下和使用TaqDNA聚合酶,以进一步随机引入突变,利用重叠PCR产物构建了一个噬菌体抗体库,经过3轮淘选后,获得了几个具有较高免疫学活性的改形抗体,对其中的两个抗体进行了进一步研究,将两个抗体的基因在大肠杆菌BL21(DE3)中表达,复性后的表达蛋白仍具有较高的免疫学活性,结果表明该方法是有效可行的。  相似文献   

18.
The thermostable properties of the DNA polymerase activity from Thermus aquaticus (Taq) have contributed greatly to the yield, specificity, automation, and utility of the polymerase chain reaction method for amplifying DNA. We report the cloning and expression of Taq DNA polymerase in Escherichia coli. From a lambda gt11:Taq library we identified a Taq DNA fragment encoding an epitope of Taq DNA polymerase via antibody probing. The fusion protein from the lambda gt11:Taq candidate selected an antibody from an anti-Taq polymerase polyclonal antiserum which reacted with Taq polymerase on Western blots. We used the lambda gt11 clone to identify Taq polymerase clones from a lambda Ch35:Taq library. The complete Taq DNA polymerase gene has 2499 base pairs. From the predicted 832-amino acid sequence of the Taq DNA polymerase gene, Taq DNA polymerase has significant similarity to E. coli DNA polymerase I. We subcloned and expressed appropriate portions of the insert from a lambda Ch35 library candidate to yield thermostable, active, truncated, or full-length forms of the protein in E. coli under control of the lac promoter.  相似文献   

19.
We have previously generated an affibody molecule for the disease-associated amyloid beta (Aβ) peptide, which has been shown to inhibit the formation of various Aβ aggregates and revert the neurotoxicity of Aβ in a fruit fly model of Alzheimer's disease. In this study, we have investigated a new bacterial display system for combinatorial protein engineering of the Aβ-binder as a head-to-tail dimeric construct for future optimization efforts, e.g. affinity maturation. Using the bacterial display platform, we have: (i) demonstrated functional expression of the dimeric binder on the cell surface, (ii) determined the affinity and investigated the pH sensitivity of the interaction, (iii) demonstrated the importance of an intramolecular disulfide bond through selections from a cell-displayed combinatorial library, as well as (iv) investigated the effects from rational truncation of the N-terminal part of the affibody molecule on surface expression level and Aβ binding. Overall, the detailed engineering and characterization of this promising Aβ-specific affibody molecule have yielded valuable insights concerning its unusual binding mechanism. The results also demonstrated that our bacterial display system is a suitable technology for future protein engineering and characterization efforts of homo- or heterodimeric affinity proteins.  相似文献   

20.
Heparin and HS (heparan sulfate) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS binding to VEGF (vascular endothelial growth factor) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that the VEGF binding affinity likely depends on the specific structural features of these oligosaccharides, including their degree of sulfation, sugar-ring stereochemistry and conformation. Notably, the unique 3-O-sulfo group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue-specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号