首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Efficient molecular cloning of environmental DNA from geothermal sediments   总被引:5,自引:0,他引:5  
An efficient and simple method for constructing an environmental library using mechanically sheared DNA obtained directly from geothermal sediments is presented. The method is based on blunt-end modification of DNA fragments followed by 3-adenylation using Vent DNA polymerase and Taq DNA polymerase, respectively. The prepared DNA fragments are then ligated into a TA cloning vector and used in the transformation of Escherichia coli. This method has been successfully applied to the cloning of ORFs derived from uncultivated prokaryotes present in geothermal sediment.  相似文献   

2.
Histoplasmosis is considered the most important systemic mycosis in Mexico, and its diagnosis requires fast and reliable methodologies. The present study evaluated the usefulness of PCR using Hcp100 and 1281–1283(220) molecular markers in detecting Histoplasma capsulatum in occupational and recreational outbreaks. Seven clinical serum samples of infected individuals from three different histoplasmosis outbreaks were processed by enzyme-linked immunosorbent assay (ELISA) to titre anti-H. capsulatum antibodies and to extract DNA. Fourteen environmental samples were also processed for H. capsulatum isolation and DNA extraction. Both clinical and environmental DNA samples were analysed by PCR with Hcp100 and 1281–1283(220) markers. Antibodies to H. capsulatum were detected by ELISA in all serum samples using specific antigens, and in six of these samples, the PCR products of both molecular markers were amplified. Four environmental samples amplified one of the two markers, but only one sample amplified both markers and an isolate of H. capsulatum was cultured from this sample. All PCR products were sequenced, and the sequences for each marker were analysed using the Basic Local Alignment Search Tool (BLASTn), which revealed 95–98 and 98–100 % similarities with the reference sequences deposited in the GenBank for Hcp100 and 1281–1283(220), respectively. Both molecular markers proved to be useful in studying histoplasmosis outbreaks because they are matched for pathogen detection in either clinical or environmental samples.  相似文献   

3.
The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high‐throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost‐effective solution for downstream applications, including DNA sequencing on HTS platforms.  相似文献   

4.
We describe a simple electroelution method for purifying large, gel-fractionated DNA molecules that alleviates the need for melting of the agarose and subsequent enzymatic agarose digestion. The method yields DNA that is visibly more intact than that purified from a standard agarose-digestion protocol and is more amenable to large-fragment cloning with PAC and BAC vectors. These findings are notable in that PAC and BAC library construction is a very labor-intensive and costly procedure, such that any net improvement in cloning efficiency is highly advantageous. This method also should prove useful towards other applications which require purification of very large DNA molecules, such as YAC cloning.  相似文献   

5.
An unbiased DNA extraction protocol is necessary for analysis of genetic diversity, particularly, of genes in complex environmental samples by nucleic acid techniques. In the present study, three manual extraction methods and two commonly used commercial kits, which were accompanied by two DNA purification strategies, were compared based on cell lysis efficiency, DNA and humic acid yields, PCR amplification and denaturing gradient gel electrophoresis (DGGE) analysis. The results show that in spite of higher cell lysis efficiencies of the two commercial kits, the purified DNA yields were only one-third of that obtained by the two manual methods of FTSP (Freeze–thaw–SDS–Protein K) and FTSPP (Freeze–thaw–SDS–Protein K-Polyvinylpolypyrrolidone). The purified DNA from all five methods was pure enough for successful PCR and real-time PCR amplifications in the presence of 1 μg μL?1 BSA. However, the FTSPP extraction method with DNA purification by a Wizard® kit yielded the largest number of 16S rRNA gene copies and ribotypes or bands in DGGE profiles, which indicated a superiority over the other four methods. The development of this optimized DNA extraction and purification method may provide a valuable tool for further molecular analysis of compost.  相似文献   

6.
DNA分子克隆是基本的分子生物学实验技术,传统的分子克隆方法大多需经过酶切链接过程,但在某些情况下,没有合适的酶切位点往往会成为阻碍克隆进行的障碍.本文描述了一种新的分子克隆方法,称为不依赖酶切和链接的分子克隆(RLIC).利用RLIC,将3种不同大小的DNA片段克隆到3种不同载体,证明了这种方法的有效性和可靠性.由于该方法不受限制性酶切序列限制,省去了酶切连接步骤,因此具有很大的灵活性和简便性,在分子生物学研究方面有广泛应用前景.  相似文献   

7.
8.
Self-generated Percoll gradients have been used for rapid purification of crude chloroplasts and mitochondria, obtained by common differential centrifugation techniques. Such purified organelles were used for isolating DNA from safflower (Carthamus tinctorius L.), carrot (Daucus carota L.), various Solanaceae, and numerous somatic hybrids. The method is simple, has the advantage of not requiring DNase, and is particularly well suited when only limited amounts of aseptically grown shoots are available. As judged by restriction enzyme analyses and chloroplast DNA cloning experiments, the DNAs are of sufficient purity for many molecular biological applications without CsCl gradient purification.  相似文献   

9.
Molecular methods are a necessary tool for sexing monomorphic birds. These molecular approaches are usually reliable, but sexing protocols should be evaluated carefully because biochemical interactions may lead to errors. We optimized laboratory protocols for genetic sexing of a monomorphic shorebird, the upland sandpiper (Bartramia longicauda), using two independent sets of primers, P2/P8 and 2550F/2718R, to amplify regions of the sex‐linked CHD‐Z and CHD‐W genes. We discovered polymorphisms in the region of the CHD‐Z intron amplified by the primers P2/P8 which caused four males to be misidentified as females (n = 90 mated pairs). We cloned and sequenced one CHD‐W allele (370 bp) and three CHD‐Z alleles in our population: Z° (335 bp), Z (331 bp) and Z″ (330 bp). Normal (Z°Z°) males showed one band in agarose gel analysis and were easily differentiated from females (Z°W), which showed two bands. However, males heterozygous for CHD‐Z alleles (Z′Z″) unexpectedly showed two bands in a pattern similar to females. While the Z′ and Z″ fragments contained only short deletions, they annealed together during the polymerase chain reaction (PCR) process and formed heteroduplex molecules that were similar in size to the W fragment. Errors previously reported for molecular sex‐assignment have usually been due to allelic dropout, causing females to be misidentified as males. Here, we report evidence that events in PCRs can lead to the opposite error, with males misidentified as females. We recommend use of multiple primer sets and large samples of known‐sex birds for validation when designing protocols for molecular sex analysis.  相似文献   

10.
Purification of microbial DNA from soil is challenging due to the co-extraction of humic acids and associated phenolic compounds that inhibit subsequent cloning, amplification or sequencing. Removal of these contaminants is critical for the success of metagenomic library construction and high-throughput sequencing of extracted DNA. Using three different composite soil samples, we compared a novel DNA purification technique using nonlinear electrophoresis on the synchronous coefficient of drag alteration (SCODA) instrument with alternate purification methods such as direct current (DC) agarose gel electrophoresis followed by gel filtration or anion exchange chromatography, Wizard DNA Clean-Up System, and the PowerSoil DNA Isolation kit. Both nonlinear and DC electrophoresis were effective at retrieving high-molecular weight DNA with high purity, suitable for construction of large-insert libraries. The PowerSoil DNA Isolation kit and the nonlinear electrophoresis had high recovery of high purity DNA suitable for sequencing purposes. All methods demonstrated high consistency in the bacterial community profiles generated from the DNA extracts. Nonlinear electrophoresis using the SCODA instrument was the ideal methodology for the preparation of soil DNA samples suitable for both high-throughput sequencing and large-insert cloning applications.  相似文献   

11.
The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations, we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double-stranded DNA. The thermodynamic driving force for a particular molecular ion-DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilisation (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilisation (in case of CHO+) have also been investigated.  相似文献   

12.
Genomic DNA extraction protocol with relatively high quantity and purity is prerequisite for the successful molecular identification and characterisation of plant pathogens. Conventional DNA extraction methods are often time-consuming and yield only very poor quantity of genomic DNA for samples with higher mycelial age. In our laboratory, we have aimed at establishing an efficient DNA isolation procedure, exclusively for the oomycete pathogen Phytophthora colocasiae causing serious leaf blight disease in taro. For this a phenol free protocol was adopted, which involves SDS/Proteinase K-based inactivation of protein contaminants, extraction of nucleic acids using chloroform: isoamyl alcohol and later precipitation of genomic DNA using isopropanol and sodium acetate. The purity of the isolated DNA was analysed by A260/280 and A260/230 spectrophotometric readings and confirmed by restriction digestion with restriction enzyme Eco RI. In this study, a comparative assessment was done with CTAB method and the commercial genomic DNA purification kit (Thermo Fisher Scientific, Fermentas, EU). The extracted DNA was found to be suitable for further downstream applications like ITS amplification of the rDNA ITS region and PCR amplification with species-specific primers.  相似文献   

13.
Rice molecular genetic map using RFLPs and its applications   总被引:3,自引:0,他引:3  
In the past decade, notable progress has been made in rice molecular genetic mapping using genomic or cDNA clones. A total of over 3000 DNA markers, mainly with RFLPs, have been mapped on the rice genome. In addition, many studies related to tagging of genes of interest, gene isolation by map-based cloning and comparative mapping between cereal genomes have advanced along with the development of a high-density molecular genetic map. Thus rice is considered a pivotal plant among cereal crops and, in addition to Arabidopsis, is a model plant in genome analysis. In this article, the current status of the construction of rice molecular genetic maps and their applications are reviewed.  相似文献   

14.
A simple and rapid strategy for molecular cloning using a gel-free and antibiotic selection method is described which allows for the complete elimination of DNA extraction by gel electrophoresis, and thus has several advantages over gel-based cloning methods, including: (i) a cloning efficiency that is approximately 10-times higher due to the prevention of ethidium bromide ultraviolet-induced DNA damage and contamination with ligase inhibitors; (ii) the amount of plasmid DNA required is approximately five times less; and (iii) the cloning time is several hours less. Once the target gene, such as mouse HtrA2 serine protease, was cloned into the pEGFP-N3 plasmid, the integrity of the kanamycin-resistant molecular clone encoding the GFP fusion protein was verified by immunoblot and immunofluorescence assays. In addition, the integrity of the ampicillin-resistant molecular clone was directly evaluated by analyzing the expression and affinity purification of the GST fusion protein and by measuring its enzymatic activity. Therefore, this method is suitable for the routine construction of a plasmid expressing the gene of interest, and the usefulness of this strategy can be demonstrated by monitoring the expression of the target gene in E. coli and mammalian cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. G-Y Kim, M-K Nam, and S-S Kim contributed equally to this work.  相似文献   

15.
The narrow-leafed lupin possesses valuable traits for environment-friendly agriculture and for the production of unconventional agricultural products. Despite various genetic and environmental studies, the breeding of improved cultivars has been slow due to the limited knowledge of its genomic structure. Further advances in genomics require, among other things, the availability of a genomic DNA library with large inserts. We report here on the construction of the first DNA library cloned in a BAC (bacterial artificial chromosome) vector from diploid Lupinus angustifolius L. cv. Sonet. The high molecular weight DNA used for its preparation was isolated from interphase nuclei that were purified by flow cytometry. The library comprises 55,296 clones and is ordered in 144×384-well microtitre plates. With an average insert size of 100 kb, the library represents six haploid genome equivalents. Thanks to the purification of the nuclei by flow cytometry, contamination with chloroplast DNA and mitochondrial DNA was negligible. The availability of a BAC library opens avenues for the development of a physical contig map and positional gene cloning, as well as for the analysis of the plant’s genome structure and evolution.  相似文献   

16.
The colonial protochordate Botryllus schlosseri is genetically manipulable and represents a potential model organism for a variety of biological disciplines, including immunology, stem cell biology and development. This article presents the construction and characterization of both BAC and fosmid genomic libraries of the 725-Mbp B. schlosseri genome. The BAC library currently consists of 2× genome coverage with an average insert size of 80 kb. The fosmid library is at 11× genome coverage with an average insert of 40 kb. B. schlosseri is a small organism containing a large number of compounds that hinder DNA purification. Thus a number of protocols had to be modified in order to make purified, high molecular weight inserts for cloning, including both gel purification and insert concentration techniques. Both libraries were characterized by using them in initial physical mapping of a single histocompatibility locus, and were found to be representative and functional. These libraries are important tools for physical mapping and positional cloning in the B. schlosseri genome, and the techniques adapted to make them are suitable for use on other organisms in which high molecular weight DNA is difficult to purify.  相似文献   

17.
The purpose of this study was to construct a cosmid library from chromosomal DNA of a marine macroalga, Bryopsis maxima Okamura ex Segawa (Bryopsidales, Ulvophyceae), in a rapid, simple and inexpensive manner. In the DNA purification, polysaccharides were removed by covalently binding them to resin particles containing free boric acid groups. The DNA yield was 20 μg g?1 of B. maxima fresh weight. This DNA was 100–200 kb in length, and its A260/A280 and A230/A260 ratios were 1.8 and 0.4, respectively. It was of sufficient quality for molecular research. The cloning procedures were carried out in the following steps: controlled partial shearing of purified DNA through a microsyringe, optimal size separation of the DNA by biased sinusoidal field gel electrophoresis, ligation of the DNA to the cosmid vector in the gel, and in vitro packaging into the lambda phage. The library consisted of 2.0 × 103 independent clones with an average insert size of 40 kb. The fragment amplified by polymerase chain reaction in the library was hybridized with a DNA fragment (328 bp) encoding B. maxima glutamate dehydrogenase under high‐stringency conditions by Southern blot analysis, thus demonstrating that the library contained B. maxima chromosomal DNA. This cosmid library is the first to be constructed for any species of marine macroalgae.  相似文献   

18.
Here we describe a modified version of the digestion–ligation approach for efficient molecular cloning. In comparison with the original method, the modified method has the additional steps of gel purification and a second ligation after the first ligation of the linearized vector and DNA insert. During this process, the efficiency and reproducibility could be significantly improved for both stick-end cloning and blunt-end cloning. As an improvement of the very important molecular cloning technique, this method may find a wide range of applications in bioscience and biotechnology.  相似文献   

19.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>109 transformants in Escherichia coli and 105-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

20.
This paper describes an electron microscopic study of the circular replicative form DNA of bacteriophage φX174. The study has been carried out using a preparative technique in which the DNA molecules are adsorbed from solution on to the cleavage surface of mica and visualized in the electron microscope as a metal-shadowed replica (Gordon &; Kleinschmidt, 1969,1970). Contour lengths of open circular molecules were measured in samples obtained from preparations in which the following experimental parameters were varied: the ionic strength of the solution from which the DNA was adsorbed on the mica and the way in which the molecules were dried before shadowing. At the 0.05 significance level, varying these parameters had no effect on the mean length and variances of samples of molecules obtained from five experiments; the samples were therefore regarded as being drawn from the same molecular population with a mean length and variance of, respectively, 1.83 μm and 0.0117 μm2.It was argued that the DNA molecules adsorbed on the mica are “frozen” into the molecular conformation present in solution at the time of adsorption and that, therefore, the experimentally determined contour lengths represent authentic molecular lengths in solution. Based on current estimates of the replicative form DNA molecular weight, the mean contour length obtained was slightly but significantly larger than the length predicted for molecules in an exact B configuration. The variance was larger than could be attributed solely to experimental error, indicating that the molecular population in aqueous solution is heterogeneous in contour length. These experimental results were shown to be consistent with a model for DNA structure in aqueous solution in which individual molecules are dynamic variants of a perturbed B form structure (von Hippel &; Wong, 1971).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号