首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to identify the role of a recently identified Ca(2+)/calmodulin-dependent protein kinase (CaMK)-like kinase (CaMKLK) in neuronal apoptosis. For this purpose, we studied proteolytic cleavage of CaMKLK by caspases in vitro and in neuronal NG108 cells. In addition, we have investigated the effect of overexpression of wild type and mutant CaMKLK proteins on staurosporine- and serum deprivation-induced apoptosis of NG108 cells. We found that CaMKLK is a substrate for caspase-3 and -8, both in vitro and in NG108 cells during staurosporine- and serum withdrawal-induced apoptosis. Substitution of an aspartic acid residue at position 62 in an asparagine residue within a putative caspase cleavage site completely blocked cleavage of CaMKLK, strongly indicating that (59)DEND(62) is the caspase recognition site. Overexpression of an Asp(62) --> Asn CaMKLK mutant protected NG108 cells from staurosporine-induced apoptosis to a similar extent as Bcl-x(L). In contrast, overexpression of wild type CaMKLK did not lead to protection. Moreover, microinjection of Asp(62) --> Asn CaMKLK protected NG108 cells from serum deprivation-induced apoptosis, while overexpression of a caspase-generated noncatalytic N-terminal CaMKLK fragment exacerbated apoptosis. Together, our data suggest that cleavage of CaMKLK and generation of the noncatalytic N-terminal domain of CaMKLK facilitate neuronal apoptosis.  相似文献   

2.
The cytoplasmic domain of band 3 (CDB3) offers binding sites for several glycolytic enzymes and regulates the glycolysis of erythrocyte. The interaction between recombinant (His)(6)-tagged CDB3 and aldolase, one of the key enzymes that participated in erythrocyte glycolysis, was investigated in the presence of lanthanide. The results indicate that trace lanthanide blocks the inhibition of CDB3-(His)(6) to aldolase and leads to enhancement of aldolase activity. In agreement with activity studies, fluorescence spectra reveal that 4 microM lanthanum ions induce the complete dissociation of aldolase from the N-terminal of CDB3-(His)(6). Interestingly, the synchronous scanning fluorescence spectra of proteins in the presence of various concentrations of lanthanum ions suggest that the conformational change of CDB3-(His)(6) is significantly attributed to the alteration of tryptophan cluster microenvironment, while the aldolase conformation change is mainly derived from tyrosine microenvironment changes. Based on the observation that lanthanide ions induce the dissociation of aldolase from CDB3-(His)(6), it is suggested that the existence of trace lanthanide may affect the glycolysis of erythrocyte.  相似文献   

3.
Four fragments derived from the cytoplasmic pole of bovine band 3 were isolated, and their ability to bind glyceraldehyde-3-phosphate dehydrogenase from bovine erythrocyte and their amino-terminal primary structure were examined. It was suggested that the 50-kDa fragment, an entire cytoplasmic pole of band 3, contained the blocked amino-terminal end of band 3. Three other fragments, 45-, 39-, and 38-kDa fragments, were produced by cleavage at distances of molecular weight 5000, 11,000, and 12,000 respectively, from the amino-terminus of the 50-kDa fragment. Among these, the 50- and 45-kDa fragments complexed with the enzyme to inhibit its catalytic activity under conditions of low ionic strength, in a fashion similar to that in humans. Affinity for the enzyme was not significantly affected by disruption of the higher order structure of the fragments. The enzyme was found to be inactivated by association with synthetic polyanions, accompanied by conformational alteration. This supports participation of electrostatic interactions as the holding force between the enzyme and band 3, as suggested by I-H. Tsai et al. [1982) J. Biol. Chem. 257, 1438-1442). The 45-kDa fragment was just as potent an inhibitor of the enzyme as the parent fragment, and its amino-terminal region displayed a polyanionic character. These results allow us to map the enzyme binding site of bovine band 3 to a distance of molecular weight approximately 5000 from the amino-terminal end of band 3. Furthermore, comparison of sequence data from different species showed that the species-specific region of band 3 polypeptide centers around the amino-terminal portion.  相似文献   

4.
The transmembrane topology of the nucleoside transporter of human erythrocytes, which had been covalently photolabelled with [3H]nitrobenzylthioinosine, was investigated by monitoring the effect of proteinases applied to intact erythrocytes and unsealed membrane preparations. Treatment of unsealed membranes with low concentrations of trypsin and chymotrypsin at 1 degree C cleaved the nucleoside transporter, a band 4.5 polypeptide, apparent Mr 66 000-45 000, to yield two radioactive fragments with apparent Mr 38 000 and 23 000. The fragment of Mr 38 000, in contrast to the Mr 23 000 fragment, migrated as a broad peak (apparent Mr 45 000-31 000) suggesting that carbohydrate was probably attached to this fragment. Similar treatment of intact cells under iso-osmotic saline conditions at 1 degree C had no effect on the apparent Mr of the [3H]nitrobenzylthioinosine-labelled band 4.5, suggesting that at least one of the trypsin cleavage sites resulting in the apparent Mr fragments of 38 000 and 23 000 is located at the cytoplasmic surface. However, at low ionic strengths the extracellular region of the nucleoside transporter is susceptible to trypsin proteolysis, indicating that the transporter is a transmembrane protein. In contrast, the extracellular region of the [3H]cytochalasin B-labelled glucose carrier, another band 4.5 polypeptide, was resistant to trypsin digestion. Proteolysis of the glucose transporter at the cytoplasmic surface generated a radiolabelled fragment of Mr 19 000 which was distinct from the Mr 23 000 fragment radiolabelled with [3H]nitrobenzylthioinosine. The affinity for the reversible binding of [3H]cytochalasin B and [3H]nitrobenzylthioinosine to the glucose and nucleoside transporters, respectively, was lowered 2-3-fold following trypsin treatment of unsealed membranes, but the maximum number of inhibitor binding sites was unaffected despite the cleavage of band 4.5 to lower-Mr fragments.  相似文献   

5.
The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.  相似文献   

6.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

7.
The mouse hybridoma monoclonal antibody BIII.136 of the IgG2a class is specific for human erythrocyte band-3 protein. It was shown by means of immunoblotting and immunoprecipitation assays that the antibody recognized an epitope located in the cytoplasmic pole of the band-3 molecule within approximately 20 kDa from the N-terminal end. The N-terminal fragments of band-3 protein, migrating in SDS/polyacrylamide gel electrophoresis in the 60-kDa, 40-kDa and 20-kDa regions, were detected with the antibody in untreated red-cell membranes as products of autolysis of band-3 protein. A correlation was found between the amount of these fragments and erythrocyte age, which suggests that partial degradation of band 3 proceeds in vivo during senescence of erythrocytes. The further degradation of band-3 protein in vitro was not observed in intact erythrocytes stored at 4 degrees C, but progressed distinctly after hemolysis of red cells, during washing and storing the membranes.  相似文献   

8.
The topology of the human erythrocyte membrane anion-transport protein (band 3) has been investigated by isolation and peptide 'mapping' of the major and minor fragments derived from proteolytic cleavage of the lactoperoxidase 125I-labelled protein in erythrocytes and erythrocyte membranes. The content, in each fragment, of lactoperoxidase 125I-labelled sites (which have a known location in the extracellular or cytoplasmic domain of the protein), together with the location of the sites of proteolytic cleavage yielding the fragments, has allowed us to determine the alignment of the fragments on the linear amino acid sequence and to infer the topology of the polypeptide in the membrane. The results suggest that a region in the C-terminal portion of the polypeptide forms part of the cytoplasmic domain of the protein in addition to a large N-terminal segment. The membrane-bound regions of the protein are located in the C-terminal two-thirds of the molecule. In this region the polypeptide chain traverses the membrane at least four times and an additional loop of polypeptide is either embedded in the membrane or also penetrates through it to the other surface. The location of the lectin receptors on the protein and the site of binding of an anion-transport inhibitor have also been studied.  相似文献   

9.
The CEACAM1 cell adhesion molecule is a member of the carcinoembryonic antigen family. In the mouse, four distinct isoforms are generated by alternative splicing. These encode either two or four immunoglobulin domains linked through a transmembrane domain to a cytoplasmic domain that encompasses either a short 10-amino acid tail or a longer one of 73 amino acids. Inclusion of exon 7, well conserved in evolution, generates the long cytoplasmic domain. A potential caspase recognition site in mouse, rat, and human CEACAM1-L also becomes available within the peptide encoded by exon 7. We used CEACAM1-L-transfected mouse colon carcinoma CT51 cells treated with three different apoptotic agents to study its fate during cell death. We found that CEACAM1-L is cleaved resulting in rapid degradation of most of its 8-kDa cytoplasmic domain. Caspase-mediated cleavage was demonstrated using purified recombinant caspases. The long cytoplasmic domain was cleaved specifically by caspase-3 in vitro but not by caspase-7 or -8. Moreover cleavage of CEACAM1-L in apoptotic cells was blocked by addition of a selective caspase-3 inhibitor to the cultures. Using point and deletion mutants, the conserved DQRD motif in the membrane-proximal cytoplasmic domain was identified as a caspase cleavage site. We also show that once CEACAM1-L is caspase-cleaved it becomes a stronger adhesion molecule than both the shorter and the longer expressing isoforms.  相似文献   

10.
Golgin-160 is ubiquitously expressed in vertebrates. It localizes to the cytoplasmic side of the Golgi and has a large C-terminal coiled-coil domain. The noncoiled-coil N-terminal head domain contains Golgi targeting information, a cryptic nuclear localization signal, and three caspase cleavage sites. Caspase cleavage of the golgin-160 head domain generates different fragments that can translocate to the nucleus by exposing the nuclear localization signal. We have previously shown that GCP60, a Golgi resident protein, interacts weakly with the golgin-160 head domain but has a strong interaction with one of the caspase-generated golgin-160 fragments (residues 140-311). This preferential interaction increases the Golgi retention of the golgin-160 fragment in cells overexpressing GCP60. Here we studied the interaction of golgin-160-(140-311) with GCP60 and identified a single cysteine residue in GCP60 (Cys-463) that is critical for the interaction of the two proteins. Mutation of the cysteine blocked the interaction in vitro and disrupted the ability to retain the golgin-160 fragment at the Golgi in cells. We also found that Cys-463 is redox-sensitive; in its reduced form, interaction with golgin-160 was diminished or abolished, whereas oxidation of the Cys-463 by hydrogen peroxide restored the interaction. In addition, incubation with a nitric oxide donor promoted this interaction in vitro. These findings suggest that nuclear translocation of golgin-160-(140-311) is a highly coordinated event regulated not only by cleavage of the golgin-160 head but also by the oxidation state of GCP60.  相似文献   

11.
During apoptosis, the initiator caspase 9 is activated at the apoptosome after which it activates the executioner caspases 3 and 7 by proteolysis. During this process, caspase 9 is cleaved by caspase 3 at Asp(330), and it is often inferred that this proteolytic event represents a feedback amplification loop to accelerate apoptosis. However, there is substantial evidence that proteolysis per se does not activate caspase 9, so an alternative mechanism for amplification must be considered. Cleavage at Asp(330) removes a short peptide motif that allows caspase 9 to interact with IAPs (inhibitors of apoptotic proteases), and this event may control the amplification process. We show that, under physiologically relevant conditions, caspase 3, but not caspase 7, can cleave caspase 9, and this does not result in the activation of caspase 9. An IAP antagonist disrupts the inhibitory interaction between XIAP (X-linked IAP) and caspase 9, thereby enhancing activity. We demonstrate that the N-terminal peptide of caspase 9 exposed upon cleavage at Asp330 cannot bind XIAP, whereas the peptide generated by autolytic cleavage of caspase 9 at Asp315 binds XIAP with substantial affinity. Consistent with this, we found that XIAP antagonists were only capable of promoting the activity of caspase 9 when it was cleaved at Asp315, suggesting that only this form is regulated by XIAP. Our results demonstrate that cleavage by caspase 3 does not activate caspase 9, but enhances apoptosis by alleviating XIAP inhibition of the apical caspase.  相似文献   

12.
13.
Golgin-160, a ubiquitous protein in vertebrates, localizes to the cytoplasmic face of the Golgi complex. Golgin-160 has a large coiled-coil C-terminal domain and a non-coiled-coil N-terminal ("head") domain. The head domain contains important motifs, including a nuclear localization signal, a Golgi targeting domain, and three aspartates that are recognized by caspases during apoptosis. Some of the caspase cleavage products accumulate in the nucleus when overexpressed. Expression of a non-cleavable form of golgin-160 impairs apoptosis induced by some pro-apoptotic stimuli; thus cleavage of golgin-160 appears to play a role in apoptotic signaling. We used a yeast two-hybrid assay to screen for interactors of the golgin-160 head and identified GCP60 (Golgi complex-associated protein of 60 kDa). Further analysis demonstrated that GCP60 interacts preferentially with one of the golgin-160 caspase cleavage fragments (residues 140-311). This strong interaction prevented the golgin-160 fragment from accumulating in the nucleus when this fragment and GCP60 were overexpressed. In addition, cells overexpressing GCP60 were more sensitive to apoptosis induced by staurosporine, suggesting that nuclear-localized golgin-160-(140-311) might promote cell survival. Our results suggest a potential mechanism for regulating the nuclear translocation and potential functions of golgin-160 fragments.  相似文献   

14.
IF (intermediate filament) proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein), a closely related IF protein expressed mainly in astrocytes, is also a putative caspase substrate. Mutations in GFAP cause AxD (Alexander disease). The overexpression of wild-type or mutant GFAP promotes cytoplasmic aggregate formation, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD225 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp225 produces two major cleavage products. While the C-GFAP (C-terminal GFAP) is unable to assemble into filaments, the N-GFAP (N-terminal GFAP) forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP into a human astrocytoma cell line induces the formation of cytoplasmic aggregates, which also disrupt the endogenous GFAP networks. In addition, we generated a neo-epitope antibody that recognizes caspase-cleaved but not the intact GFAP. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two mouse models of AxD. These findings suggest that caspase-mediated GFAP proteolysis may be a common event in the context of both the GFAP mutation and excess.  相似文献   

15.
Members of the caspase family have been implicated as key mediators of apoptosis in mammalian cells. However, few of their substrates are known to have physiological significance in the apoptotic process. We focused our screening for caspase substrates on cytoskeletal proteins. We found that an actin binding protein, filamin, was cleaved from 280 kDa to 170, 150, and 120 kDa major N-terminal fragments, and 135, 120, and 110 kDa major C-terminal fragments when apoptosis was induced by etoposide in both the human monoblastic leukemia cell line U937, and the human T lymphoblastic cell line Jurkat. The cleavage of filamin was blocked by a cell permeable inhibitor of caspase-3-like protease, Ac-DEVD-cho, but not by an inhibitor of caspase-1-like protease, Ac-YVAD-cho. These results suggest that filamin is cleaved by a caspase-3-like protease. To examine whether caspase-3 cleaves filamin in vitro, we prepared a recombinant active form of caspase-3 directly using a Pichia pastoris overexpression system. When we applied recombinant active caspase-3 to the cell lysate of U937 and Jurkat cells, filamin was cleaved into the same fragments seen in apoptosis-induced cells in vivo. Platelet filamin was also cleaved directly from 280 kDa to 170, 150, and 120 kDa N-terminal fragments, and the cleavage pattern was the same as observed in apoptotic human cells in vivo. These results suggest that filamin is an in vivo substrate of caspase-3.  相似文献   

16.
W206R]-procaspase 3: an inactivatable substrate for caspase 8.   总被引:1,自引:0,他引:1  
We report here the cloning and high-level expression of a soluble proform of human caspase 3 (Ser(24)-H(277)) engineered to contain a short stretch of N-terminal sequence (MTISDSPREQD) from the prosegment of procaspase 8 and a C-terminal heptahistidine tag. The precursor protein isolated from extracts of recombinant Escherichia coli by immobilized metal-ion affinity chromatography was predominantly unprocessed and migrated as a 32-kDa polypeptide on sodium dodecyl sulfate-polyacrylamide gels. Incubation of this protein with recombinant human caspase 8 produced fragments characteristic of the properly processed caspase 3, but the product was inactive. Amino-terminal sequence analysis of the caspase 3 polypeptides proved that caspase 8 had specifically cleaved the Asp(175)-Ser(176) bond to yield the expected p18 and p12 subunits, with partial cleavage at the Asp(28)-Ser(29) bond to release the prosegment. The lack of caspase 3 activity was found to be the result of a fortuitous mutation in which Trp(206) in the S4 subsite was replaced by arginine (W206R). This mutant procaspase 3, which we call m-pro3, serves as a useful reagent with which to test the efficacy of caspase 8 inhibitors in blocking processing of the natural polypeptide substrate of this enzyme and may be valuable as a source of "proenzyme" for crystallographic analysis.  相似文献   

17.
Human erythrocyte metabolism is modulated by the cell oxygenation state. Among other mechanisms, competition of deoxyhemoglobin and some glycolytic enzymes for the cytoplasmic domain of band 3 is probably involved in modulation. This metabolic modulation is connected to variations in intracellular NADPH and ATP levels as a function of the oxygenation state of the cell, and, consequently, it should have physiologic relevance. The present study investigates the effect of amyloid-beta peptide exposure on this metabolic modulation and its relationship with the activity of erythrocyte caspase 3. Metabolic differences between erythrocytes incubated at high and low oxygen saturation disappear following to 24 h exposure to amyloid-beta peptide. Western blotting analysis shows that caspase 3 is concurrently activated. Pre-incubation of amyloid-beta peptide-treated erythrocytes with a specific inhibitor of caspase 3, partially restores the oxygen-dependent modulation. This finding suggests that human erythrocytes following to exposure to amyloid-beta peptide show a complete loss of the oxygen-dependent metabolic modulation, which is partially restored by caspase 3 inhibitor-treatment.  相似文献   

18.
Calcium is known to be a potent but partial intracellular inhibitor of band 3 anion exchange. Here we test the hypothesis that the cytoplasmic domain of band 3 (CDB3) contains a calcium binding site. Calcium binding to CDB3 was monitored by measuring the formation of the Aresenazo III-calcium complex at various constant CDB3 concentrations. These experiments were performed at physiological salt and neutral pH. The calcium-CDB3 dissociation constant was estimated to be less than or equal to 24 microM. We also found that the Arsenazo III-calcium complex binds to CDB3, while the free dye does not bind. We conclude that CDB3 contains a site which is capable of binding free calcium under physiological conditions. A specific role for this site in inhibition of band 3 anion exchange is suggested, but that role remains to be established.  相似文献   

19.
Human erythrocyte band 3 was covalently labeled within the integral membrane domain by incubating intact erythrocytes with the phosphorescent probe eosinyl-5-maleimide. The rotational diffusion of band 3 in membranes prepared from these labeled cells was measured using the technique of time-resolved phosphorescence anisotropy. Three rotational correlation times ranging from 16 to 3800 microseconds were observed, suggesting that band 3 exists in different aggregate states within the plane of the membrane. The oxidizing agent phenylhydrazine was used to induce hemichrome formation within intact erythrocytes. The immobilization of band 3 in membranes prepared from these erythrocytes suggests that the binding of hemichromes induces clustering of band 3. The addition of purified hemichromes to erythrocyte ghosts leads to a similar effect. We have also examined the mobility of the cytoplasmic domain of band 3. This region was labeled indirectly using a phosphorescently labeled antibody which binds to an epitope within the cytoplasmic domain. We observed very rapid motion of the cytoplasmic region of band 3, which was only partially restricted upon hemichrome binding. This suggests that the integral and cytoplasmic domains of band 3 may be independently mobile.  相似文献   

20.
The fidelity of chromosomal duplication is monitored by cell cycle checkpoints operational during mitosis. One such cell cycle delay is invoked by microtubule-targeting agents such as nocodazole or paclitaxel (Taxol) and is mediated by mitotic checkpoint proteins that include BubR1. Relatively little is known about the regulation of expression and stability of BubR1 (or other checkpoint proteins) and how these factors dictate the durability of the cell cycle delay. We report here that treatment of HeLa cells with spindle-disrupting agents resulted in caspase activation and precipitated the cleavage of BubR1. This mechanism ultimately leads to reduced levels of full-length protein, which are accompanied by abrogation of the mitotic block; the checkpoint abrogation is substantially accelerated by inhibition of de novo protein synthesis. In contrast, inhibition of caspase activity blocked BubR1 degradation and prolonged mitosis. To confirm a direct link between caspase activity and BubR1 protein expression, we identified by site-directed mutagenesis the specific caspase cleavage sites cleaved after exposure to paclitaxel. Surprisingly, BubR1 has two sites of cleavage: primarily at Asp607/Asp610 and secondarily at Asp576/Asp579. BubR1 mutated at both locations (BubR1Delta579Delta610) was resistant to paclitaxel-induced degradation. Expression of BubR1Delta579Delta610 augmented the mitotic delay induced by spindle disruption in transfected cells as well as in clones engineered to inducibly express the mutant protein upon exposure to doxycycline and ultimately led to increased aneuploidy. Underscoring the importance of these caspase cleavage sites, both tetrapeptide motifs are identified in the amino acid sequences of human, mouse, chicken, and Xenopus BubR1. These results are potentially the first to link the control of the stability of a key mitotic checkpoint protein to caspase activation, a regulatory pathway that may be involved in killing defective cells and that has been evolutionarily conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号