共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro generation of infectious scrapie prions 总被引:21,自引:0,他引:21
Prions are unconventional infectious agents responsible for transmissible spongiform encephalopathy (TSE) diseases. They are thought to be composed exclusively of the protease-resistant prion protein (PrPres) that replicates in the body by inducing the misfolding of the cellular prion protein (PrPC). Although compelling evidence supports this hypothesis, generation of infectious prion particles in vitro has not been convincingly demonstrated. Here we show that PrPC --> PrPres conversion can be mimicked in vitro by cyclic amplification of protein misfolding, resulting in indefinite amplification of PrPres. The in vitro-generated forms of PrPres share similar biochemical and structural properties with PrPres derived from sick brains. Inoculation of wild-type hamsters with in vitro-produced PrPres led to a scrapie disease identical to the illness produced by brain infectious material. These findings demonstrate that prions can be generated in vitro and provide strong evidence in support of the protein-only hypothesis of prion transmission. 相似文献
2.
Ligios C Cancedda MG Carta A Santucciu C Maestrale C Demontis F Saba M Patta C DeMartini JC Aguzzi A Sigurdson CJ 《Journal of virology》2011,85(2):1136-1139
Prions are misfolded proteins that are infectious and naturally transmitted, causing a fatal neurological disease in humans and animals. Prion shedding routes have been shown to be modified by inflammation in excretory organs, such as the kidney. Here, we show that sheep with scrapie and lentiviral mastitis secrete prions into the milk and infect nearly 90% of naïve suckling lambs. Thus, lentiviruses may enhance prion transmission, conceivably sustaining prion infections in flocks for generations. This study also indicates a risk of prion spread to sheep and potentially to other animals through dietary exposure to pooled sheep milk or milk products.Prion diseases have emerged globally as a significant threat to human and animal health. Recently, human-to-human spread of prions is believed to have occurred through blood transfusions (9, 12, 16), underscoring the importance of understanding possible transmission routes. PrPSc, a misfolded, aggregated form of the normal prion protein, PrPC, commonly accumulates in the follicles of lymphoid tissues, prior to entering the central nervous system (2, 11, 14). Inflammation can cause lymphoid follicles to form in other organs, such as liver and kidney, which leads to prion invasion of organs that are not typically prion permissive (1). In mice, prion infection in the inflamed kidney has the untoward consequence of prion excretion in urine (13). This finding, together with our report of sheep with PrPSc in the inflamed mammary gland (8), has raised concerns of prion secretion into milk.Here, we investigated whether PrPSc in the inflamed mammary gland leads to prion secretion in milk and infection of naïve lambs through suckling. Prion infectivity has been detected in the milk of sheep expressing a prion gene (Prnp) coding for VRQ/VRQ or VRQ/ARQ at polymorphic codons 136, 154, and 171 (3, 4). However, whether (i) sheep-to-lamb transmission of prions in milk leads to clinical prion disease or (ii) sheep with the common ARQ/ARQ Prnp genotype can infect lambs through milk is unknown. We induced a chronic lentiviral mastitis and inoculated ARQ/ARQ Sarda breed sheep with infectious prions. After 14 months, we bred the sheep and collected the milk. To avoid cross-contamination of newborn lambs, we fed the milk to imported known-naïve lambs and then monitored the lambs for signs of prion infection (Fig. (Fig.1A1A).Open in a separate windowFIG. 1.Sheep infected with prions and maedi-visna virus (MVV) develop lymphofollicular mastitis with PrPSc. (A) Experimental scheme. Sheep were inoculated with culture medium or MVV and were then orally exposed to scrapie prions and bred. Milk was collected near the time point that neurologic signs of scrapie developed and was fed to naïve lambs. The ratio of lambs with detectable PrPSc to lambs fed the indicated milk is shown for each experiment. (B) PrP immunohistochemistry assay of brain and tonsil from milk source sheep shows staining for PrPSc in the brainstem, particularly in the vagal nucleus (indicated by asterisks) and in the tonsillar follicles of scrapie-infected sheep (arrows). (C) Mammary gland (MG) of milk source sheep shows lymphoid follicles (arrowheads) with associated PrPSc (arrows) adjacent to milk ducts (md) in the MVV-inoculated sheep, whereas the medium-inoculated sheep had a histologically normal MG with no detectable PrPSc. Insets show a high magnification of follicles containing PrPSc. Scale bar = 100 μm; scale bar in inset = 25 μm. (D) Western blot analysis shows PrPSc detection in MG of sheep inoculated with MVV/scrapie agents but not in sheep inoculated with scrapie prions only. The sheep identification number is indicated for each lane. PK, proteinase K digested; pos. br, positive brain control; neg. br, negative brain control.To induce a chronic lymphofollicular mastitis, we exposed 7- to 10-day-old lambs (groups of 10) by intratracheal and intravenous routes to a common sheep lentivirus known as maedi-visna virus (MVV) or to cell culture medium only. To do this, lambs were inoculated with 3.5 ml intravenously and 0.5 ml intratracheally of MVV in culture supernatant containing 1.5 × 106 tissue culture infectious doses/ml of the “rapid/high” MVV strain 85/34 (5, 15). Twenty days later, all lambs were orally inoculated with 25 ml of 10% scrapie-infected brain homogenate from a pool of naturally infected Sarda sheep.We sequenced the entire Prnp gene and found that all lambs expressed the ARQ/ARQ Prnp genotype, indicating that the sheep should be susceptible to scrapie. As negative controls, 2 lambs of Prnp genotype ARR/ARR and ARQ/ARQ were mock inoculated with cell culture medium and healthy brain homogenate. All lambs originated from scrapie-free flocks that had been monitored for clinical scrapie cases for at least 3 years.All inoculated sheep were naturally bred to rams at 15 months postinoculation (p.i.) and produced lambs at 20 months p.i. Sheep developed early signs of scrapie just after the lambs were born. Milk from each sheep was manually collected and frozen daily.Eight of 10 MVV-and-scrapie (denoted MVV/scrapie)-inoculated sheep and 9 of 10 scrapie-inoculated sheep showed clinical signs of scrapie, with mean incubation periods of 22 ± 1.4 and 23 ± 1.5 months postinoculation, respectively, and were euthanized. There was no significant difference in incubation period between the groups (Student''s t test, P = 0.5), indicating that inflammation associated with the MVV infection does not accelerate prion disease. This finding is consistent with the results of previous studies that showed that chronic pancreatitis or nephritis did not affect the scrapie incubation period (1). Scrapie infection was confirmed postmortem by the detection of PrPSc in brain and lymphoid tissues by Western blot and immunohistochemistry assays (Fig. (Fig.1B).1B). Interestingly, scrapie did not develop in 3 sheep with a Prnp gene encoding a rare polymorphism at codon 176 (K), consistent with recent reports describing scrapie resistance for this genotype (10).Antibodies to MVV were detected in serum of all the MVV-inoculated sheep by indirect enzyme-linked immunosorbent assay (ELISA) (Elitest kit; Hyphen BioMed). Five of 8 MVV/scrapie-infected sheep (63%) showed a lymphofollicular mastitis (Fig. (Fig.1C),1C), and 3 had a diffuse interacinar lymphoid infiltrate. Of the 5 sheep with lymphofollicular mastitis, 4 had PrPSc deposits detectable by immunohistochemistry and Western blot assays (Fig. 1C and D), whereas no sheep with diffuse lymphoid infiltrates had detectable PrPSc. Surprisingly, 2 of 9 sheep inoculated only with scrapie also had lymphofollicular mastitis and anti-MVV antibodies, one of which had visible PrPSc deposits. MVV is a common pathogen in Europe, and it is possible that these sheep were infected from the dam. The remaining 7 scrapie-inoculated sheep had histologically normal mammary glands (Fig. (Fig.1C)1C) and no detectable PrPSc (Fig. (Fig.1D)1D) or anti-MVV antibodies.We selected the stored milk from the 4 MVV/scrapie-infected sheep with PrPSc in the mammary glands and from the 7 scrapie-infected sheep with histologically normal mammary glands. Milk samples from the early, middle, and late stages of lactation were pooled for each group. We imported naïve Cheviot lambs (n = 9) from flocks that originated from scrapie-free New Zealand and had been bred and housed under strict biosecurity containment in the United Kingdom to ensure that the lambs had not been exposed to scrapie. The Sarda lambs (n = 4) originated from a scrapie-free flock in Sardinia. We then fed pooled milk from MVV/scrapie-infected sheep to each of 8 naïve ARQ/ARQ lambs and from scrapie-infected sheep to 3 naïve ARQ/ARQ lambs ad libitum. Each lamb ingested a total volume of 1 to 2 liters over a total period of 3 days (Table (Table1).1). Two lambs were orally inoculated with brain homogenate pooled from the scrapie-infected milk donors as positive controls. Groups of lambs were housed in separate stalls and subjected to isolation conditions.
Open in a separate windowaThe Prnp genotype of all lambs was ARQ/ARQ at codons 136, 154, and 171. Additional dimorphisms in other codons of Prnp are noted.Of the 8 lambs fed milk from MVV/scrapie-infected sheep, 1 was sacrificed early and 4 developed clinical signs of scrapie at 23 to 28 months p.i. (Table (Table1).1). The 3 remaining MVV/scrapie-exposed lambs and all control lambs were sacrificed between 28 and 29 months p.i. Both lambs orally inoculated with scrapie brain had PrPSc deposits detectable in the brain. The lamb from the MVV/scrapie group that was sacrificed early (12 months p.i.) had developed an intercurrent illness and had no biochemical or histologic evidence of scrapie infection. However, 6 of the 7 (86%) remaining lambs exposed to milk from the MVV/scrapie-infected dams had detectable PrPSc in the brain and lymphoid tissues (Fig. (Fig.2),2), indicating that infection from prion-laden milk was dependent on mammary gland inflammation. No lambs fed milk from the scrapie-only infected dams had detectable PrPSc. We considered that horizontal transmission of prions could have occurred within the MVV/scrapie-exposed lambs; however, Sardinian strains of sheep scrapie are not efficiently transmitted in ARQ/ARQ Sarda sheep, with a maximum recorded prevalence of 41% and an average prevalence of 13% (7).Open in a separate windowFIG. 2.Lambs developed prion infection through suckling milk from scrapie-infected sheep with mastitis. Brainstem and tonsil from lambs ingesting milk from MVV/scrapie- or scrapie-infected sheep were immunostained for PrP (A) or proteinase K digested (PK) and examined by Western blotting (B). The results show that only the lambs suckling the milk derived from MVV/scrapie-infected sheep accumulated PrPSc. The sheep identification number is indicated for each lane. scr+, scrapie-positive control; scr−, scrapie-negative control. Scale bars = 100 μm.Previous studies have found that the cellular fraction of milk harbors the most infectivity (4), and the higher leukocyte count in milk that occurs with mastitis could conceivably have increased the infectious prion titers in milk. Our studies in ARQ/ARQ sheep suggest that mammary gland inflammation is necessary for prion transmission through milk, although it remains possible that large milk volumes from sheep without mastitis would transmit prions to nursing lambs. Indeed, milk from VRQ/VRQ sheep without clinical mastitis was previously shown to transmit prion infection to the lambs, as evidenced by PrPSc deposits in lymphoid tissue biopsy specimens (3).Taken together, these findings demonstrate that the ingestion of as little as 1 to 2 liters of milk from sheep with scrapie and lymphofollicular mastitis can cause prion infection in ARQ/ARQ lambs at an attack rate of 86%. These data show that a common lentivirus can induce an inflammatory setting highly conducive for prion propagation and secretion in milk, although a role for the virus in transporting prions into the milk or stimulating PrPSc release from infected cells (6) cannot be excluded. Considering that MVV and other lentiviruses are endemic in sheep and goat populations worldwide, the possibility that lentiviruses have enabled prion transmission through milk and, ultimately, the propagation of scrapie through some flocks should be considered. Together with two other recent reports on infectious prions in sheep milk (3, 4), these studies indicate a risk of prion spread to sheep and, potentially, other animals through dietary exposure to sheep milk or milk products. World milk production contributes up to 13% of the protein supply for humans; thus, studies to determine the extent of infectious prions entering our global food supply would be worthwhile and important for accurate risk assessment. 相似文献
TABLE 1.
Genotype, breed, and PrPSc detection in lambs fed milk from MVV/scrapie- or scrapie-infected sheepLamb (dimorphisma) | Milk source infected with: | Amt of milk ingested (liters) | Breed | Clinical signs present | PrPSc detected by WB/IHC in: | Time point postinoculation (mo) | |
---|---|---|---|---|---|---|---|
Brain | Tonsil | ||||||
951 | MVV/Scrapie | 1.2 | Cheviot | No | −/− | −/− | 12 |
326 (127G/V) | MVV/Scrapie | 1.9 | Sarda | No | −/− | −/− | 28 |
328 (127G/V) | MVV/Scrapie | 1.8 | Sarda | Yes | +/+ | +/+ | 28 |
327 | MVV/Scrapie | 1.4 | Sarda | Yes | +/+ | +/+ | 25 |
847 | MVV/Scrapie | 1.3 | Cheviot | Yes | +/+ | +/+ | 23 |
329 | MVV/Scrapie | 2.1 | Sarda | Yes | +/+ | +/+ | 25 |
843 (141F/L) | MVV/Scrapie | 1.3 | Cheviot | No | +/+ | +/+ | 28 |
849 (141F/L) | MVV/Scrapie | 1.8 | Cheviot | No | +/+ | +/+ | 29 |
953 (141F/L) | Scrapie | 1.5 | Cheviot | No | −/− | −/− | 28 |
956 (141F/L) | Scrapie | 1.7 | Cheviot | No | −/− | −/− | 28 |
957 (141F/L) | Scrapie | 1.4 | Cheviot | No | −/− | −/− | 28 |
3.
4.
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis. 相似文献
5.
Martin L Daus 《World journal of biological chemistry》2015,6(3):218-222
Proteinaceous infectious particles(prions) are unique pathogens as they are devoid of any coding nucleic acid.Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed. 相似文献
6.
Transmission of scrapie by steel-surface-bound prions. 总被引:7,自引:0,他引:7
E Flechsig I Hegyi M Enari P Schwarz J Collinge C Weissmann 《Molecular medicine (Cambridge, Mass.)》2001,7(10):679-684
BACKGROUND: Prions are unusually resistant to conventional disinfection procedures. An electrode used intracerebrally on a Creutzfeldt-Jakob disease (CJD) patient transmitted the disease to two patients in succession and finally to a chimpanzee, despite attempted disinfection. Concerns that surgical instruments may transmit variant CJD have been raised by the finding of PrP(Sc), a surrogate marker for infectivity, in various tissues other than brain. MATERIALS AND METHODS: Stainless steel wire was exposed to scrapie-infected brain or brain homogenate, washed exhaustively and inserted into the brain of indicator mice to measure infectivity. RESULTS: A contact time of 5 min with scrapie-infected mouse brain suffices to render steel wire highly infectious and insertion of infectious wire into the brain of an indicator mouse for 30 min suffices to cause disease. Infectivity bound to wires persists far longer in the brain than when injected as homogenate, which can explain the extraordinary efficiency of wire-mediated infection. No detectable amounts of PrP could be eluted with NaOH, however the presence of PrP on infectious wires was demonstrated by chemiluminescence. Several recommended sterilisation procedures inactivated wire-bound mouse prions, but exposure to 10% formaldehyde was insufficient. CONCLUSIONS: Prions are readily and tightly bound to stainless steel surfaces and can transmit scrapie to recipient mice after short exposure times. This system mimics contaminated surgical instruments and will allow an assessment of sterilisation procedures. 相似文献
7.
E. Zobeley E. Flechsig A. Cozzio M. Enari C. Weissmann 《Molecular medicine (Cambridge, Mass.)》1999,5(4):240-243
BACKGROUND: The transmissible agent of Creutzfeldt-Jakob disease (CJD) is not readily destroyed by conventional sterilization and transmissions by surgical instruments have been reported. Decontamination studies have been carried out thus far on solutions or suspensions of the agent and may not reflect the behavior of surface-bound infectivity. MATERIALS AND METHODS: As a model for contaminated surgical instruments, thin stainless-steel wire segments were exposed to scrapie agent, washed exhaustively with or without treatment with 10% formaldehyde, and implanted into the brains of indicator mice. Infectivity was estimated from the time elapsing to terminal disease. RESULTS: Stainless steel wire (0.15 x 5 mm) exposed to scrapie-infected mouse brain homogenate and washed extensively with PBS retained the equivalent of about 10(5) LD50 units per segment. Treatment with 10% formaldehyde for 1 hr reduced this value by only about 30-fold. CONCLUSIONS: The model system we have devised confirms the anecdotal reports that steel instruments can retain CJD infectivity even after formaldehyde treatment. It lends itself to a systematic study of the conditions required to effectively inactivate CJD, bovine spongiform encephalopathy, and scrapie agent adsorbed to stainless steel surfaces such as those of surgical instruments. 相似文献
8.
Gough KC Baker CA Rees HC Terry LA Spiropoulos J Thorne L Maddison BC 《Journal of virology》2012,86(1):566-571
Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrP(Sc) within lymphoreticular tissues. PrP(Sc) was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie. 相似文献
9.
Detection of infectious prions in urine 总被引:2,自引:0,他引:2
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). The mechanism of prion transmission is unknown. In this study, we attempted to detect prions in urine of experimentally infected animals. PrP(Sc) was detected in approximately 80% of the animals studied, whereas no false positives were observed among the control animals. Semi-quantitative calculations suggest that PrP(Sc) concentration in urine is around 10-fold lower than in blood. Interestingly, PrP(Sc) present in urine maintains its infectious properties. Our data indicate that low quantities of infectious prions are excreted in the urine. These findings suggest that urine is a possible source of prion transmission. 相似文献
10.
Studies in transgenic mice revealed that neurodegeneration induced by scrapie prion (PrP(Sc)) propagation is dependent on neuronal expression of the cellular prion protein PrP(C). On the other hand, there is evidence that PrP(C) itself has a stress-protective activity. Here, we show that the toxic activity of PrP(Sc) and the protective activity of PrP(C) are interconnected. With a novel co-cultivation assay, we demonstrate that PrP(Sc) can induce apoptotic signalling in PrP(C)-expressing cells. However, cells expressing PrP mutants with an impaired stress-protective activity were resistant to PrP(Sc)-induced toxicity. We also show that the internal hydrophobic domain promotes dimer formation of PrP and that dimerization of PrP is linked to its stress-protective activity. PrP mutants defective in dimer formation did not confer enhanced stress tolerance. Moreover, in chronically scrapie-infected neuroblastoma cells the amount of PrP(C) dimers inversely correlated with the amount of PrP(Sc) and the resistance of the cells to various stress conditions. Our results provide new insight into the mechanism of PrP(C)-mediated neuroprotection and indicate that pathological PrP conformers abuse PrP(C)-dependent pathways for apoptotic signalling. 相似文献
11.
Protein misfolding is central to the pathogenesis of several neurodegenerative disorders. Among these disorders, prion diseases are unique because they are transmissible. The conversion of the host-encoded GPI-anchored PrP protein into a structurally altered form is crucially associated with the infectious and neurotoxic properties of the resulting abnormal PrP. Many lines of evidence indicate that distinct aggregated forms with different size and protease resistance are produced during prion multiplication. The recent isolation of various subsets of abnormal PrP, along with the improved biochemical tools and infectivity detection assays have shed light on the diversity of abnormal PrP protein and may give insights into the features of the more infectious subsets of abnormal PrP.Key words: prions, aggregates, infectivity, EST, PrP protein 相似文献
12.
P P Liberski 《Postepy biochemii》1986,32(1-2):203-223
13.
Suzuki Y Sazaki G Miyashita S Sawada T Tamura K Komatsu H 《Biochimica et biophysica acta》2002,1595(1-2):345-356
Pressure is expected to be an important parameter to control protein crystallization, since hydrostatic pressure affects the whole system uniformly and can be changed very rapidly. So far, a lot of studies on protein crystallization have been done. Solubility of protein depends on pressure. For instance, the solubility of tetragonal lysozyme crystal increased with increasing pressure, while that of orthorhombic crystal decreased. The solubility of subtilisin increased with increasing pressure. Crystal growth rates of protein also depend on pressure. The growth rate of glucose isomerase was significantly enhanced with increasing pressure. The growth rate of tetragonal lysozyme crystal and subtilisin decreased with increasing pressure. To study the effects of pressure on the crystallization more precisely and systematically, hen egg white lysozyme is the most suitable protein at this stage, since a lot of data can be used. We focused on growth kinetics under high pressure, since extensive studies on growth kinetics have already been done at atmospheric pressure, and almost all of them have explained the growth mechanisms well. The growth rates of tetragonal lysozyme decreased with pressure under the same supersaturation. This means that the surface growth kinetics significantly depends on pressure. By analyzing the dependence of supersaturation on growth rate, it was found that the increase in average ledge surface energy of the two-dimensional nuclei with pressure explained the decrease in growth rate. At this stage, it is not clear whether the increase in surface energy with increasing pressure is the main reason or not. Fundamental studies on protein crystallization under high pressure will be useful for high pressure crystallography and high pressure protein science. 相似文献
14.
Infectious mouse prions can be produced from a mixture of bacterially expressed recombinant prion protein (recPrP), palmitoyloleoylphosphatidylglycerol (POPG), and RNA [Wang, F.; et al. (2010) Science 327, 1132]. In contrast, amyloid fibers produced from pure recPrP without POPG or RNA (recPrP fibers) fail to infect wild type mice [Colby, D.W.; et al. (2010) PLoS Pathog. 387, e1000736]. We compared the seeding specificity and ultrastructural features of infectious recombinant prions (recPrP(Sc)) with those of recPrP fibers. Our results indicate that PrP fibers are not able to induce the formation of PrP(Sc) molecules from wild type mouse brain homogenate substrate in serial protein misfolding cyclic amplification (sPMCA) reactions. Conversely, recPrP(Sc) molecules did not accelerate the formation of amyloid in vitro, under conditions that produce recPrP fibers spontaneously. Ultrastructurally, recombinant prions appear to be small spherical aggregates rather than elongated fibers, as determined by atomic force and electron microscopy. Taken together, our results show that recPrP(Sc) molecules and PrP fibers have different ultrastructural features and seeding specificities, suggesting that prion infectivity may be propagated by a specific and unique assembly pathway facilitated by cofactors. 相似文献
15.
《Molecular cell》2021,81(21):4540-4551.e6
16.
17.
N Naslavsky H Shmeeda G Friedlander A Yanai A H Futerman Y Barenholz A Taraboulos 《The Journal of biological chemistry》1999,274(30):20763-20771
Sphingolipid-rich rafts play an essential role in the posttranslational (Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990) J. Cell Biol. 110, 743-752)) formation of the scrapie prion protein PrP(Sc) from its normal conformer PrP(C) (Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S. B., and Avraham, D. (1995) J. Cell Biol. 129, 121-132). We investigated the importance of sphingolipids in the metabolism of the PrP isoforms in scrapie-infected ScN2a cells. The ceramide synthase inhibitor fumonisin B(1) (FB(1)) reduced both sphingomyelin (SM) and ganglioside GM1 in cells by up to 50%, whereas PrP(Sc) increased by 3-4-fold. Whereas FB(1) profoundly altered the cell lipid composition, the raft residents PrP(C), PrP(Sc), caveolin 1, and GM1 remained insoluble in Triton X-100. Metabolic radiolabeling demonstrated that PrP(C) production was either unchanged or slightly reduced in FB(1)-treated cells, whereas PrP(Sc) formation was augmented by 3-4-fold. To identify the sphingolipid species the decrease of which correlates with increased PrP(Sc), we used two other reagents. When cells were incubated with sphingomyelinase for 3 days, SM levels decreased, GM1 was unaltered, and PrP(Sc) increased by 3-4-fold. In contrast, the glycosphingolipid inhibitor PDMP reduced PrP(Sc) while increasing SM. Thus, PrP(Sc) seems to correlate inversely with SM levels. The effects of SM depletion contrasted with those previously obtained with the cholesterol inhibitor lovastatin, which reduced PrP(Sc) and removed it from detergent-insoluble complexes. 相似文献
18.
Garcia AF Heindl P Voigt H Büttner M Butz P Tauber N Tauscher B Pfaff E 《The Journal of biological chemistry》2005,280(11):9842-9847
Crude brain homogenates of terminally diseased hamsters infected with the 263K strain of scrapie (PrP(Sc)) and purified prion fibrils were heated or pressurized at 800 megapascals and 60 degrees C for 2 h in different buffers and in water. Prion proteins (PrP) were analyzed for their proteinase K resistance in immunoblots and for their infectivity in hamster bioassays. A notable decrease in the proteinase K resistance of unpurified prion proteins, probably because of pressure-induced changes in the protein conformation of native PrP(Sc) or the N-truncated PrP-(27-30), could be demonstrated when pressurized at initially neutral conditions in several buffers and in water but not in a slightly acidic pH. A subsequent 6-7 log(10) reduction of infectious units/g in phosphate-buffered saline buffer, pH 7.4, was found. The proteinase K-resistant core was also not detectable after purification of prions extracted from pressurized samples, confirming pressure effects at the level of the secondary structure of prion proteins. However, opposite results were found after pressurizing purified prions, arguing for the existence of pressure-sensitive beta-structures (PrP(Sc)(DeltaPsen)) and extremely pressure-resistant beta-structures (PrP(Sc)(DeltaPres)). Remarkably, after the first centrifugation step at 540,000 x g during isolation, prions remained proteinase K-resistant when pressurized in all tested buffers and in water. It is known that purified fibrils retain infectivity, but the isolated protein (full and N-truncated) behaved differently from native PrP(Sc) under pressure, suggesting a kind of semicrystalline polymer structure. 相似文献
19.
Diastolic pressure determines autonomic responses to pressure perturbation in humans 总被引:5,自引:0,他引:5
Arterial baroreceptors reflexly regulate sympathetic and heart rate responses to alteration of blood pressure. The primary mechanical determinant of arterial baroreceptor activity in humans remains unclear. We examined the influence of systolic, diastolic, pulse, and mean arterial pressures on efferent muscle sympathetic nerve activity (MSNA, microneurography) and heart rate responses during perturbation of arterial pressure in 10 normal human subjects [age 25 +/- 2 (SE) yr]. We directly measured arterial pressure, heart rate, and MSNA during intravenous vasodilator infusion (nitroprusside, 6 +/- 1 micrograms.kg-1.min-1, n = 6; or hydralazine, 16 +/- 2 mg, n = 4) while central venous pressure was held constant by simultaneous volume expansion. Changes in arterial pressures were compared with changes in heart rate and MSNA over 3-min periods of vasodilator infusion during which we observed increases in systolic and pulse pressures with simultaneous decreases in mean and diastolic pressures. During vasodilator infusion, there were increases in systolic (124.2 +/- 2.1 to 131.7 +/- 2.9 Torr, P less than 0.001) and pulse pressures (57.0 +/- 2.2 to 72.7 +/- 2.7 Torr, P less than 0.001) although mean arterial pressure fell (88.0 +/- 2.6 to 80.4 +/- 2.7 Torr, P less than 0.001) because of decreases in diastolic pressure (67.2 +/- 3.0 to 59.0 +/- 2.7 Torr, P less than 0.001). The changes in arterial pressures were accompanied by simultaneous increases in heart rate (66.4 +/- 3.0 to 92.6 +/- 4.8 beats/min, P less than 0.001) and MSNA (327 +/- 59 to 936 +/- 171 U, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process. 相似文献