首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

2.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

3.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

4.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

5.
Human epidermal growth factor (hEGF) is a cellular factor that promotes cell proliferation and has been widely used for the treatment of wounds, corneal injuries, and gastric ulcers. Recombinant hEGF (rhEGF) has previously been expressed using the pTWIN1 system with pH‐induced intein and a chitin‐binding domain. The rhEGF protein can be purified by chitin affinity chromatography because of the high affinity between the chitin‐binding domain fusion‐tag and the column. However, uncontrolled cleavage presents a major problem with this method. To overcome this problem, a novel purification method has been developed for a pH‐induced intein tag rhEGF that is expressed in Escherichia coli. Following purification by denaturation of inclusion bodies, the fusion protein is renatured and simultaneously induced to self‐cleave by dialysis. Further purification of rhEGF is achieved by heat treatment and ion‐exchange chromatography. Our results show that the purity of rhEGF obtained through this method is over 98% and the quantity of purified rhEGF is 248 mg from a 1 L culture or 2,967 mg from a 12 L culture. Therefore, we conclude that we have developed an efficient purification method of rhEGF, which may be used for the purification of other heat‐resistant and acid‐resistant recombinant proteins. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:758–764, 2015  相似文献   

6.
A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity.  相似文献   

7.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

8.
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector, allowing for the purification of a native recombinant protein without the need for enzymatic cleavage. The fusion protein under the AOX1 promoter was integrated into the P. pastoris genome (SMD 1168) and the recombinant Pichia clones were screened for multicopy integrants. Expression of hGMCSF was done using glycerol and methanol based synthetic medium by three stage cultivation in a bioreactor. Purification of the expressed hGMCSF fusion protein was done after cell disruption and binding of the solubilized fusion protein to chitin affinity column, followed by DTT induced on column cleavage of hGMCSF from the intein tag. In this study, final biomass of 89 g dry cell weight/l and purified hGMCSF of 120 mg/l having a specific activity of 0.657 x 10(7) IU/mg was obtained. This strategy has an edge over the other--His or--GST based fusion protein purification where non-specific protein binding, expensive enzymatic cleavage and further purification of the enzyme is required. It distinguishes itself from all other purification systems by its ability to purify, in a single chromatographic step.  相似文献   

9.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

10.
Human metallothionein (MT), isoform 2, was expressed in Escherichia coli as an intein (protein splicing element) fusion protein in the absence of added metals and purified by intein-mediated purification with an affinity chitin-binding tag (IMPACT system). This procedure constitutes a novel and simple strategy to prepare thionein (T), the metal-free form, or MT when reconstituting T with metals in vitro. The yield was 8 mg of T or 6 mg of pure Cd(7)- or Zn(7)-MT from a 1-L culture, significantly higher than yields from any other expression system. Purified recombinant protein is indistinguishable from the native protein on the basis of its metal-binding ability, titration of its sulfhydryls, and UV and CD spectra. The MALDI-TOF mass spectrum is consistent with that of T with a free N-terminus.  相似文献   

11.
Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins.  相似文献   

12.
In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as  相似文献   

13.
In this study, we compared two gene fusion expression strategies using two rare codon genes (Ssh10b and MtGrxM) from archaea as a model system. Both genes can be highly expressed as N- or C-terminal fusion partners to GST or the intein/chitin-binding tag. However, the fusion protein with intein tag could not be cleaved, even under stringent conditions, possibly due to steric hindrance, thus preventing further purification. In contrast, the GST fusion system could increase protein expression level and the corresponding fusion protein could be easily cleaved by thrombin. After binding to glutathione sepharose, the fusion protein was cleaved on column, and a roughly purified protein fraction was eluted. This fraction was purified by heating at 80 degrees C for 10 min, followed by centrifugation. The correct total mass and N-terminal primary structure were confirmed by mass spectrometry and Edman degradation. Both constructs were used for in vitro expression, and similar results were obtained, indicating higher expression levels of the GST tag vs. intein/chitin tag. Taken together, our results suggest that the GST fusion system can be used as a considerable alternative to synthetic genes for the expression of rare codon genes. The affinity chromatography purification followed by a heating step is an efficient and convenient method for thermostable protein purification.  相似文献   

14.
内含肽是前体未成熟蛋白中的一段具有自我剪接功能的多肽链,在蛋白质纯化、蛋白质连接、环肽制备、蛋白标记以及生物传感器等方面广泛应用。本文综述了内含肽应用于蛋白质亲和纯化的发展历程,分别对层析型和非层析型内含肽纯化体系进行了分析和讨论,并总结了对控制内含肽断裂反应所进行的研究,为进一步改善内含肽介导蛋白质纯化提供依据和线索。  相似文献   

15.
Wu WY  Mee C  Califano F  Banki R  Wood DW 《Nature protocols》2006,1(5):2257-2262
A simple technique is presented for non-chromatographic purification of recombinant proteins expressed in Escherichia coli. This method is based on a reversibly precipitating, self-cleaving purification tag. The tag is made up of two components: an elastin-like polypeptide (ELP), which reversibly self-associates in high-salt buffers at temperatures above 30 degrees C; and an intein, which causes the ELP tag to self-cleave in response to a mild pH shift. Thus, a tripartite ELP-intein-target protein precursor can be purified by cycles of salt addition, heating and centrifugation. Once purified, intein-mediated self-cleavage, followed by precipitation of the cleaved ELP tag, allows easy and effective isolation of the pure, native target protein without the need for chromatographic separations. Recoveries of 50-100 mg of cleaved, native target protein per liter of shake-flask culture have been achieved for over a dozen proteins, typically in 8-24 h depending on specific process parameters.  相似文献   

16.
Several systems have been developed to allow for rapid and efficient purification of recombinant proteins expressed in bacteria. The expression of polypeptides in frame with glutathione S-transferase (GST) allows for purification of the fusion proteins from crude bacterial extracts under nondenaturing conditions by affinity chromatography on glutathione agarose (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). This vector expression system has also incorporated specific protease cleavage sites to facilitate proteolysis of the bacterial fusion proteins. In our hands, the cleavage of these fusion proteins at a thrombin cleavage site proceeded slowly. To facilitate the cleavage of fusion proteins, we have introduced a glycine-rich linker (glycine kinker) containing the sequence P.G.I.S.G.G.G.G.G located immediately following the thrombin cleavage site. This glycine kinker greatly increases the thrombin cleavage efficiency of several fusion proteins. The introduction of the glycine kinker into fusion proteins allows for the cleavage of the fusion proteins while they are attached to the affinity resin resulting in a single step purification of the recombinant protein. More than 2 mg of the highly purified protein was obtained from the equivalent of 100 ml of bacterial culture within a few hours when a protein tyrosine phosphatase was employed as a test protein. The vector, pGEX-KG, has also been modified to facilitate cloning of a variety of cDNAs in all reading frames and has been successfully used to express several eukaryotic proteins.  相似文献   

17.
为了实现蛋白内含肽(Intein)介导的重组环状胸腺五肽结构类似物[cyclo-(Cys -Arg-Lys –Asp-Val-Tyr),cTP]的高效制备,设计并合成编码6个氨基酸的cTP基因,克隆到表达载体pTWIN1,重组表达质粒pTW-cTp转化E.coli ER2566构建工程菌,IPTG诱导由几丁质结合域纯化标签(chitin binding domain,CBD)、2个蛋白内含肽和目的多肽组成的“多元”融合蛋白(CBD-intein1-cTP-intein2-CBD)的高效表达.几丁质柱亲合层析纯化融合蛋白后,改变pH值和温度诱导intein1 C端切割,硫醇MESNA诱导intein2 N端切割,释放N端为Cys,C端为硫酯的重组cTP线性前体,通过非保护多肽硫酯环合法实现环肽生成.激光飞行质谱结果显示,纯化产物的分子量为764.4,与环肽的理论值相符.免疫活性检测结果显示,环肽cTP较线性多肽TP-5具有更显著的促进巨噬细胞吞噬能力的活性(P<0.01)和促进B细胞抗体生成的活性(P<0.01).  相似文献   

18.
Yu RJ  Xie QL  Dai Y  Gao Y  Zhou TH  Hong A 《Peptides》2006,27(6):1359-1366
In order to obtain the recombinant VPAC2 agonist efficiently by intein-mediated single column purification, a gene encoding 32-amino acids peptide was designed, synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-ROM was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the rMROM-intein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by beta-mercaptoethanol and the rMROM with the homogeneity over 95% was released from the chitin-bound intein tag. The recombinant linear rMROM competitively displaced [125I] PACAP38 on VPAC2 with a half-maximal inhibitory concentration (IC50) of 60 +/- 5 nM, whereas the IC50 of rMROM at human VPAC1 was observed up to 10 microM and no binding was detected at PAC1. rMROM stimulated the cAMP accumulation in Chinese hamster ovary (CHO) cells expressing the human VPAC2 with a half-maximal stimulatory concentration (EC50) of 0.6 nM, which was 500-fold less potent at VPAC1and had no activity on PAC1. An efficient production procedure of a novel recombinant VPAC2-selective agonist was established.  相似文献   

19.
The Staphylococcus simulans gene encoding lysostaphin has been PCR amplified from pRG5 recombinant plasmid (ATCC 67076) and cloned into Escherichia coli expression pTYB12 vector (IMPACT-CN System, New England BioLabs) which allows the overexpression of a target protein as a fusion to a self-cleavable affinity tag. The self-cleavage activity of the intein allows the release of the lysostaphin enzyme from the chitin-bound intein tag, resulting in a single-column purification of the target protein. This abundant overproduction allows purifying milligram amounts of the enzyme.  相似文献   

20.
Easy and low-cost protein purification methods for the mass production of commonly used enzymes that play important roles in biotechnology are in high demand. In this study, we developed a fast, low-cost recombinant protein purification system in the methylotrophic yeast Pichia pastoris using the family 3 cellulose-binding module (CBM3)-based affinity tag. The codon of the cbm3 gene from Clostridium thermocellum was optimized based on the codon usage of P. pastoris. The CBM3 tag was then fused with enhanced green fluorescent protein (CBM3-EGFP) or with inulinase and expressed in P. pastoris to demonstrate its ability to function as an affinity tag in a yeast expression system. We also examined the effects of glycosylation on the secreted CBM3-tag. The secreted wild-type CBM3-EGFP was glycosylated; however, this had little influence on the adsorption of the fusion protein to the regenerated amorphous cellulose (RAC; maximum adsorption capacity of 319 mg/g). Two CBM3-EGFP mutants lacking glycosylation sites were also constructed. The three CBM3-EGFPs expressed in P. pastoris and the CBM3-EGFP expressed in Escherichia coli all had similar RAC adsorption capacity. To construct a tag-free recombinant protein purification system based on CBM3, a CBM3-intein-EGFP fusion protein was expressed in P. pastoris. This fusion protein was stably expressed and the self-cleavage of intein was efficiently induced by DTT or l-cysteine. In this study, we were able to purify the recombinant fusion protein with high efficiency using both intein and direct fusion-based strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号