首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly and processing of procollagen type III in chick embryo blood vessels   总被引:10,自引:0,他引:10  
The processing of [3H]proline-labeled procollagen III in excised chick embryo blood vessels was found to differ significantly from that of procollagen I in the same tissue. While first the amino propeptides and then the carboxyl propeptides were fairly rapidly cleaved from procollagen I, only the carboxyl propeptides were split off procollagen III, leaving pN-collagen III. This intermediate, which is only slowly converted to collagen III by loss of amino propeptides, was characterized by its sedimentation properties, isolation of the amino propeptide, and reaction with purified antibodies that are specific against bovine amino propeptide III. It is interchain disulfide-linked, both through the amino propeptide and the carboxyl ends of the collagen chains. The conversion of procollagen III to pN-collagen III either in blood vessels, or after isolation by a carboxyl procollagen peptidase obtained from chick tendon fibroblast cultures, is inhibited by 50 mM arginine. Underhydroxylated procollagen III was isolated from blood vessels treated with alpha, alpha'-dipyridyl. Its amino propeptides reacted with the above antibodies but were not linked to each other. In contrast, its carboxyl propeptides were interchain disulfide-bridged, supporting previous suggestions that the carboxyl propeptides play a role in the assembly of procollagen trimer.  相似文献   

2.
At high concentrations, type I pN-collagen, pC-collagen and procollagen (the first 2 generated from procollagen by enzymic cleavage of C-propeptides and N-propeptides, respectively) can all be made to assemble in vitro into thin D-periodic sheets or tapes. Scanning transmission electron microscopy mass measurements show that the pN-collagen sheets and procollagen tapes have a mass per unit area corresponding to that of approximately 6.8 monolayers of close-packed molecules. pN-collagen sheets are extensive and remarkably uniform in mass thickness (fractional S.D. 0.035); procollagen tapes are neither as extensive nor as uniform in thickness. The mean thickness of pC-collagen tapes is less and the variability is greater. In pN-collagen sheets, the overlap: gap mass contrast in a D-period is increased from 5:4 (the ratio in a native collagen fibril) to 6:4, showing that the N-propeptides do not project into the gap but are folded back over the overlap zone. Assuming all N-propeptides to be constrained to the two surfaces of a sheet, their surface density can be found from the mass thickness of the sheet. In a lateral direction (i.e. normal to the axial direction where the spacing is D-periodic), the N-propeptide domains are calculated to be spaced, centre to centre, by 2.23 (+/- 0.1) nm on both surfaces. This value (approx. 1.5 x the triple-helix diameter) implies close-packing laterally with adjacent domains in contact. Sheet formation and the "surface-seeking" behaviour of propeptides can be understood in terms of the dual character of the molecules, evident from solubility data, with propeptides possessing interaction properties very different from those displayed by the rest of the molecule. The form and stability of sheets (and of first-formed fibrils assembling in vivo) could, it is suggested, depend on the partially fluid-like nature of lateral contacts between collagen molecules.  相似文献   

3.
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.  相似文献   

4.
The assembly of type I collagen and type I pN-collagen was studied in vitro using a system for generating these molecules enzymatically from their immediate biosynthetic precursors. Collagen generated by C-proteinase digestion of pC-collagen formed D-periodically banded fibrils that were essentially cylindrical (i.e. circular in cross-section). In contrast, pN-collagen generated by C-proteinase digestion of procollagen formed thin, sheet-like structures that were axially D-periodic in longitudinal section, of varying lateral widths (up to several microns) and uniform in thickness (approximately 8 nm). Mixtures of collagen and pN-collagen assembled to form a variety of pleomorphic fibrils. With increasing pN-collagen content, fibril cross-sections were progressively distorted from circular to lobulated to thin and branched structures. Some of these structures were similar to fibrils observed in certain heritable disorders of connective tissue where N-terminal procollagen processing is defective. The observations are considered in terms of the hypothesis that the N-propeptides are preferentially located on the surface of a growing assembly. The implications for normal diameter control of collagen fibrils in vivo are discussed.  相似文献   

5.
Summary Collagen fibrillogenesis was studied in tibiae of chick embryos, 9, 11, and 14 days old. Specimens were incubated with antibodies against the amino and the carboxyl propeptides of type-I collagen and subjected to ferritin-la-belling immuno-electron microscopy. The amino propeptide was found in thin fibrils, 20–40 nm in diameter, distributed at 60-nm periodicity. The carboxyl propeptide antibody labelled a wide spectrum of fibrils, although the majority were in the range of 40–100 nm, distinctly larger than those labelled with the amino propeptide antibody. The presence of pN (amino propeptide plus collagen) and pC (carboxyl propeptide plus collagen) collagen was also demonstrated by Western blotting in all specimens. This study suggests that the sequence of propeptide removal may regulate collagen fibril diameter.  相似文献   

6.
Monoclonal antibodies that recognize an epitope within the triple helix of type III collagen have been used to examine the distribution of that collagen type in human skin, cornea, amnion, aorta, and tendon. Ultrastructural examination of those tissues indicates antibody binding to collagen fibrils in skin, amnion, aorta, and tendon regardless of the diameter of the fibril. The antibody distribution is unchanged with donor age, site of biopsy, or region of tissue examined. In contrast, antibody applied to adult human cornea localizes to isolated fibrils, which appear randomly throughout the matrix. These studies indicate that type III collagen remains associated with collagen fibrils after removal of the amino and carboxyl propeptides, and suggests that fibrils of skin, tendon, and amnion (and presumably many other tissues that contain both types I and III collagens) are copolymers of at least types I and III collagens.  相似文献   

7.
A general mechanism for the assembly of procollagens is proposed from a biosynthetic study of procollagen III. This was shown to proceed by a stepwise process punctuated by disulfide bond formation and an assembly intermediate was recovered. The biosynthesis of type III procollagen in excised chick embryo blood vessels was studied by radioactive labeling for 30 min. Velocity sedimentation under denaturing conditions and purified antibodies specific against bovine amino propeptide III were used to identify and characterize monomeric pro alpha 1 III chains and a type III procollagen intermediate which is interchain disulfide-linked only at the carboxyl end but not at the amino end. The monomeric chains presumably have intrachain disulfide bonds within the propeptides. The monomeric pro alpha 1 III chains were also found when alpha, alpha'-dipyridyl was present during incubation. Pulse-chase experiments show that the monomeric chains and the intermediate are biosynthetic precursors of type III procollagen. Furthermore, it is shown that monomeric pro alpha 1 chains are not triple helical when extracted under nondenaturing conditions. The results indicate that the assembly of pro alpha 1 III chains into type III procollagen starts with the association of the folded carboxyl propeptides and is followed by formation of disulfide bonds between carboxyl propeptides, folding of the triple helix, and formation of disulfide bonds between amino propeptides. All procollagens may follow a similar assembly sequence.  相似文献   

8.
Chick embryo sterna, which actively synthesize type II procollagen, were pulse-labeled with radioactive proline; protein synthesis was then inhibited by unlabeled proline and cycloheximide. After the inhibition of protein synthesis, several amino acids, polyamines, or structurally related compounds were added to the incubation medium. The conversion of procollagen, first to two intermediates, pC-collagen and pN-collagen, and then to collagen, was monitored by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The addition of 50 mm β-alanine, arginine, asparagine, glutamine, hydroxylysine, lysine, or ornithine, as well as agmatine, ?-aminocaproic acid, S-2-aminoethylcysteine, cadaverine, canavanine, putrescine, or spermine clearly inhibited the removal of the carboxy-terminal extension and pC-collagen accumulated; the removal of the amino-terminal extension was not affected. The inhibition of the conversion was reversible and unaffected by fetal calf serum. The results suggest that the conversion of type II procollagen to collagen requires at least two separate proteinases for the removal of amino-terminal and carboxy-terminal extensions. The results further suggest that naturally occurring molecules may be used to modulate the rate of conversion of procollagen to collagen, and development of analogs of these compounds may provide the means to interfere with excessive deposition of collagen in diseases with tissue fibrosis.  相似文献   

9.
Type I procollagen was purified from the medium of cultured human fibroblasts incubated with 14C-labeled amino acids, the NH2-terminal propeptides were cleaved with procollagen N-proteinase, and the resulting pC-collagen was isolated by gel filtration chromatography. pC-collagen did not assemble into fibrils or large aggregates even at concentrations of 0.5 mg.ml-1 at 34 degrees C in a physiological buffer. However, cleavage of pC-collagen to collagen with purified C-proteinase (Hojima, Y., (1985) J. Biol. Chem. 260, 15996-16003) generated fibrils that were visible by eye and that were large enough to be separated from solution by centrifugation at 13,000 x g for 4 min. With high concentrations of enzyme, the pC-collagen was completely cleaved in 1 h, and turbidity was near maximal in 3 h, but collagen continued to be incorporated in fibrils for over 10 h. Because the pC-collagen was uniformly labeled with 14C-aminoacids, the concentration of soluble collagen and, therefore, the critical concentration of polymerization were determined directly. The critical concentration was independent of the initial pC-collagen concentration and of the rate of cleavage. The critical concentration decreased with temperature between 29 and 41 degrees C and was 0.12 +/- 0.06 (S.E.) microgram.ml-1 at 41 degrees C. The thermodynamic parameters of assembly were essentially independent of temperature in the range 29 to 41 degrees C. The process was endothermic with a delta H value of +56 kcal.mol-1, but entropy driven with a delta S value of +220 cal.K-1.mol-1. The Gibbs energy change for polymerization was -13 kcal.mol-1 at 37 degrees C. The data demonstrate, for the first time, that type I collagen fibril formation de novo is a classical example of an entropy-driven self-assembly process similar to the polymerization of actin, flagella, and tobacco mosaic virus protein.  相似文献   

10.
Collagen monomers, oligomers, and fibrillar structures were isolated from chick tendons at various stages of development and studied by rotary shadowing. Monomers of Type I collagen, solubilized in 0.15 M NaCl solutions, were mostly present as collagen, pN-collagen, and pC-collagen with few procollagen molecules. They did not form polymers, nor were they associated with a carrier. Dimers of fibrillar collagen molecules were arranged in a 4-D stagger, suggesting that this was the preferred molecular interaction for the initiation of collagen fibrillogenesis. Type XII collagen molecules were mostly free, but some were attached by their central globular domain to one end of free fibrillar collagen molecules. Tenascin and Type VI collagen were also identified. The fibril populations consisted of collagen and beaded structures. These fibrils consisted of beads (globular domains) about 23 nm in diameter, separated by a period about 27 nm in length. Beads were linked by filamentous structures. These beaded fibrils probably represent the microfibrils of elastin.  相似文献   

11.
S Curran  D J Prockop 《Biochemistry》1982,21(7):1482-1487
The amino-terminal propeptide from type II procollagen was isolated from organ cultures of sternal cartilages from 17-day-old chick embryos. The procedure provided the first isolation of the propeptide in amounts adequate for chemical characterization. The propeptide had an apparent molecular weight of 18000 as estimated by gel electrophoresis in sodium dodecyl sulfate. It contained a collagen-like domain as demonstrated by its amino acid composition, circular dichroism spectrum, and susceptibility to bacterial collagenase. One residue of hydroxylysine was present, the first time this amino acid has been detected in a propeptide. The peptide contained no methionine and only two residues of half-cystine. Antibodies were prepared to the propeptide and were used to establish its identity. The antibodies precipitated type II procollagen but did not precipitate type II procollagen from which the amino and carboxy propeptides were removed with pepsin. Also, they did not precipitate the carboxy propeptide of type II procollagen. The data demonstrated th at the type II amino propeptide was similar to the amino propeptides of type I and type III procollagens in that it contained a collagen-like domain. It differed, however, in that it lacked a globular domain as large as the globular domain of 77-86 residues found at the amino-terminal ends of the pro alpha 1 chains of type I and type III procollagens.  相似文献   

12.
In cultures of dermal fibroblasts, procollagen and the intermediates pC- and pN-collagen accumulated in the culture medium with little further processing to collagen. When polyethylene glycol (PEG) or other neutral polymers were added to fibroblast culture medium, no collagen or procollagen was found in the medium, but all the collagen was associated with the cell layer. The type I procollagen was fully processed to collagen with an initial transient accumulation of pN-collagen, and the processed collagen formed covalently cross-linked dimers. The presence of pepsin-sensitive COOH-terminal telopeptides and the accumulation of pN-collagen in PEG-treated cultures of dermatosparactic fibroblasts indicated that it was likely that processing occurred via the correct in vivo propeptidase activities. At the levels used in this study, PEG did not have any toxic effect during the incubation period on the fibroblasts in culture, since the amount of total protein synthesis was not altered by addition of PEG to cultures. However, the level of collagen production was reduced to about half, indicating that there was increased degradation or that the released collagen propeptides or the accumulation of processed collagen in association with the cells exerted a feedback regulation on collagen synthesis. Addition of neutral polymers to the culture medium provided a simple means of achieving complete and accurate processing of procollagen which more closely resembled the in vivo process.  相似文献   

13.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

14.
It is established fact that type I collagen spontaneously self-assembles in vitro in the absence of cells or other macromolecules. Whether or not this is the situation in vivo was unknown. Recent evidence shows that intracellular cleavage of procollagen (the soluble precursor of collagen) to collagen can occur in embryonic tendon cells in vivo, and when this occurs, intracellular collagen fibrils are observed. A cause-and-effect relationship between intracellular collagen and intracellular fibrils was not established. Here we show that intracellular cleavage of procollagen to collagen occurs in postnatal murine tendon cells in situ. Pulse-chase analyses showed cleavage of procollagen to collagen via its two propeptide-retained intermediates. Furthermore, immunoelectron microscopy, using an antibody that recognizes the triple helical domain of collagen, shows collagen molecules in large-diameter transport compartments close to the plasma membrane. However, neither intracellular fibrils nor fibripositors (collagen fibril-containing plasma membrane protrusions) were observed. The results show that intracellular collagen occurs in murine tendon in the absence of intracellular fibrillogenesis and fibripositor formation. Furthermore, the results show that murine postnatal tendon cells have a high capacity to prevent intracellular collagen fibrillogenesis.  相似文献   

15.
Patients with OI/EDS form a distinct subset of osteogenesis imperfecta (OI) patients. In addition to skeletal fragility, they have characteristics of Ehlers-Danlos syndrome (EDS). We identified 7 children with types III or IV OI, plus severe large and small joint laxity and early progressive scoliosis. In each child with OI/EDS, we identified a mutation in the first 90 residues of the helical region of alpha1(I) collagen. These mutations prevent or delay removal of the procollagen N-propeptide by purified N-proteinase (ADAMTS-2) in vitro and in pericellular assays. The mutant pN-collagen which results is efficiently incorporated into matrix by cultured fibroblasts and osteoblasts and is prominently present in newly incorporated and immaturely cross-linked collagen. Dermal collagen fibrils have significantly reduced cross-sectional diameters, corroborating incorporation of pN-collagen into fibrils in vivo. Differential scanning calorimetry revealed that these mutant collagens are less stable than the corresponding procollagens, which is not seen with other type I collagen helical mutations. These mutations disrupt a distinct folding region of high thermal stability in the first 90 residues at the amino end of type I collagen and alter the secondary structure of the adjacent N-proteinase cleavage site. Thus, these OI/EDS collagen mutations are directly responsible for the bone fragility of OI and indirectly responsible for EDS symptoms, by interference with N-propeptide removal.  相似文献   

16.
The distribution of the extracellular matrix proteins types III pN-collagen and IV collagen, laminin and tenascin was investigated in fetal, infant, and adult human spleens by using immuno-electron microscopy. The presence of type III pN-collagen was assessed by using an antibody against the aminoterminal propeptide of type III procollagen. All the proteins other than type III pN-collagen were found in reticular fibers throughout development. In the white pulp of the fetus aged 16 gestational weeks, only an occasional type III pN-collagen-containing fibril was present, although type III pN-collagen was abundant in the reticular fibers of the red pulp. Conversely, in adults, most of the reticular fibers of the white pulp, but not of the red pulp, were immunoreactive for type III pN-collagen. Ring fibers, the basement membranes of venous sinuses, were well developed in both infant and adult spleens. The first signs of their formation could be seen as a discontinuous basement membrane, which was immunoreactive for type IV collagen, laminin, and tenascin in the fetus aged 20 gestational weeks. Intracytoplasmic immunoreactivity for all the proteins studied was visible in the mesenchymal cells of the fetus aged 16 gestational weeks and in the reticular cells of the older fetuses, which also showed labeling for type IV collagen and laminin in the endothelial cells. The results suggest that proteins of the extracellular matrix are produced by these stationary cells.  相似文献   

17.
The biosynthesis and proteolytic processing of type XI procollagen was examined using pulse-chase labelling of 17-day embryonic chick sterna in organ culture with [3H]proline. Products of biosynthesis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with and without prior reduction of disulfide bonds. Pro-alpha chains, intermediates, and matrix forms were identified by cyanogen bromide or Staphylococcus aureus V8 protease digestion. The results show that type XI pro-alpha chains assemble into trimeric molecules with interchain disulfide bonds. Proteolytic processing begins at least 40 min after the start of labeling which is later than that of type II procollagen (25 min). This first processing step involves the loss of the domain containing the interchain disulfide bonds which most likely is the carboxyl propeptide. In the case of the pro-alpha 3 chain, this generates the matrix form, m alpha 3, which retains its amino propeptide. For the pro-alpha 1 and pro-alpha 2 chains, this step generates intermediate forms, p alpha 1 and p alpha 2, which undergo a second proteolytic conversion to m alpha 1 and m alpha 2, and yet retain a pepsin-labile domain. The conversion of p alpha 2 to m alpha 2 is largely complete 2 h after labeling. p alpha 1 is converted to m alpha 1 very slowly and is 50% complete after 18 h of chase in organ culture. The apparent proteolytic processing within the amino propeptide, and the differential rate of processing between two chains in the same molecule are unusual and distinguish type XI from collagen types I, II, and III. It is possible that the extremely slow processing of p alpha 1 affects the formation of the heterotypic cartilage collagen fibrils and may be related to the function of type XI collagen.  相似文献   

18.
A rapid assay procedure was developed for measuring the rate of cleavage of the amino-terminal propeptide of type III procollagen. The method was based on the sequential precipitation of type III collagen and uncleaved pN-collagen by 30% ammonium sulfate, while the free amino-terminal propeptide remained in solution and could be further precipitated by 60% ammonium sulfate. Consistently better results were obtained than with the earlier method in which absolute ethanol was used as the precipitant, and selective precipitation was confirmed by polyacrylamide gel electrophoresis of the pellets. The high sensitivity of this method facilitates relatively rapid assays even from small amounts of cultured cells.  相似文献   

19.
We have followed the deposition and maturation of the pericellular matrix of amniotic epithelial cell cultures for up to eight weeks using metabolic labeling and immunoelectron microscopy. This matrix contains mainly collagen type III and fibronectin. Cleavage of the carboxypropeptide occurred after secretion of the procollagen molecules into the medium but was not accompanied by a significant release of the aminopropeptide. The early matrix, as isolated from the cultures by a deoxycholate procedure, contained collagenous proteins predominantly composed of pN alpha 1(III) chains, which still possessed the aminopropeptide, and only little material in the form of alpha 1(III) chains. The relative amount of alpha 1(III) chains increased during subsequent days of culture. Electron microscopy showed two types of structures in the matrix: thin fibrils, ranging from 10 to 30 nm in diameter, with no apparent cross-striation, and 50-500 nm thick bundles composed of filamentous and amorphous material. In the fibrils, immunoferritin electron microscopy showed a regular staining for the aminopropeptide of procollagen type III with a periodicity of 71 nm. These collagenous fibrils did not stain for fibronectin which was found in the bundles. Since most of the aminopropeptide in the matrix appeared covalently linked as pN-collagen, we conclude that the deposition of this intermediate form of procollagen is a general mechanism in collagen type III fibrillogenesis.  相似文献   

20.
Summary The aim of this study was to assess and compare the accumulation and distribution of newly synthesized type I and III collagens in usual interstitial pneumonia (UIP) and pulmonary sarcoidosis. Lung biopsies from 10 patients with UIP and 13 patients with sarcoidosis were investigated by immunohistochemical technique and mRNA in situ hybridization. The antibodies for the aminoterminal propeptide of type I procollagen and the aminoterminal propeptide of type III procollagen (PINP and PIIINP, respectively) were used. When compared to healthy lung, levels of type I pN- and type III pN-collagens were increased in both of these disorders. Type I procollagen was mostly present as intracellular spots in newly formed fibrosis in UIP while type III pN-collagen was expressed extracellularly underneath metaplastic alveolar epithelium. Type I procollagen was present intracellularly within and around the granulomas of sarcoidosis, whereas type III pN-collagen was expressed extracellularly, mainly around the granulomas. mRNAs of both collagens colocalized with the precursor proteins. We conclude that the expression of precursor proteins and mRNA of type I and type III collagens is increased in UIP and sarcoidosis, reflecting mainly active synthesis of these collagens in different areas of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号