首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

2.
ATP stimulates chromaffin granules from the bovine adrenal medulla to release epinephrine and specific soluble proteins. ATP analogs substituted in the β-γ-position with either nitrogen or carbon were also found to be effective at inducing release from isolated chromaffin granules. However, an ATP analog substituted at the α-β position with carbon was strongly inhibitory. Cyclic AMP was also found to be synthesized by isolated chromaffin granules under release conditions. ATP analogs were effective as substrates for adenylate cyclase in the same order as their efficiency for inducing release from vesicles. Hydrolysis at the β-γ linkage of ATP therefore is probably not necessary for release; however, hydrolysis at the α-β position may be important in the release process. Cyclic AMP may be produced and play a regulatory role in this event.  相似文献   

3.
H+ ATPase of chromaffin granules. Kinetics, regulation, and stoichiometry   总被引:5,自引:0,他引:5  
The chromaffin granule ATPase mediates an inwardly directed transport of H+ against concentration gradients, thereby forming and maintaining an electrochemical transmembrane H+ gradient. The kinetics of this ATPase, its activity modulation by changes in electrochemical H+ gradients, and the stoichiometry between H+ transport and ATP hydrolysis were studied in intact bovine chromaffin granules, resealed chromaffin granule ghosts, and highly purified fragmented chromaffin granule membranes. In fragmented membranes the H+ ATPase has a KM for ATP of 69 microM, a maximum of activity at pH 7.3, and a Vmax of 111 nmol/min/mg of protein at 20 degrees C. Trimethyl tin inhibits the ATPase at much lower concentrations than dicyclohexylcarbodiimide, whereas oligomycin, reserpine, and other inhibitors were without effect. In intact chromaffin granules, the ATPase activity was stimulated up to 300% by collapsing the H+ transmembrane gradients. H+/ATP stoichiometry was measured in resealed chromaffin ghosts devoid of ATP and catecholamines under conditions where no net pH changes occur upon ATP hydrolysis. After addition of ATP, the rates of H+ accumulation in the ghosts and ATP hydrolysis were both linear for about 60-100 s, and the ratio of H+ to ATP was 1.71. These data indicate that the H+ ATPase of chromaffin granules has both kinetic similarities and dissimilarities with other known H+ ATPases. The regulation by changes in H+ gradients and the fixed H+/ATP ratio of this ATPase is further evidence of its primary role in establishing electrogenic H+ translocation and H+ gradients in chromaffin granules.  相似文献   

4.
When isolated chromaffin granules were aggregated by synexin (a Ca2+-binding protein present in chromaffin and other secretory tissues) and then exposed to cis-unsaturated fatty acids at 37 degrees C, they fused together to form large vesicles. The fusion was monitored by phase and electron microscopy and by turbidity measurements on the granule suspension. Arachidonic acid was the most effective fusogen, whereas trans-unsaturated fatty acids, saturated fatty acids, detergents or lysolecithin were inactive. During fusion some of the epinephrine of the granules was released but the soluble core proteins remained trapped in the resulting vesicles. These vesicles swelled to enclose the maximum volume. Although this swelling could be inhibited by increasing the osmotic strength of the medium, it did not appear to depend on the chemiosmotic properties of the granule membranes as it was not influenced by ATP, a proton ionophore, or an anion transport inhibitor. The regulators of this in vitro fusion--Ca2+, synexin, and free, cis-unsaturated fatty acids--may be present in the cytoplasm of the chromaffin cell when it is stimulated to release epinephrine and granule proteins by exocytosis. Therefore, this fusion event may be the same that occurs between chromaffin granules undergoing compound exocytosis.  相似文献   

5.
1. AMP, adenosine, inosine and hypoxanthine were present in perfusates collected from bovine adrenal glands during periods when catecholamine secretion was evoked by injections of carbamoylcholine. 2. The molar ratio of catecholamines to ATP-catabolites present in the perfusates was similar to that of catecholamines to ATP in chromaffin granules. 3. ATP added to the perfusing medium was extensively degraded during passage through bovine adrenal glands. 4. The mechanism of catecholamine secretion is discussed.  相似文献   

6.
ATP hydrolysis and proton translocation in chromaffin granules were followed using 31P nuclear magnetic resonance. The intragranular pH affects the resonance frequency of the gamma-phosphate of granular ATP. By measuring frequency vs. pH in solutions which simulate the intragranular matrix, this may be calibrated to give quantitative pH measurements. The pH in the resting granule is 5.65 +/- 0.15. This drops by 0.4 to 0.5 pH unit when ATP is added externally and protons are actively pumped into the granules. Because of differences in the composition and pH of the internal and external solutions, the resonances of internal and external nucleotides and Pi can be distinguished. Consequently, ATP hydrolysis and changes in internal pH may be observed simultaneously and continuously in a single sample of chromaffin granules. From the measured buffering capacity of a reconstituted intragranular solution, pH changes were converted into an absolute number of protons translocated. The net proton flux (protons translocated/ATP hydrolyzed) was about 1.0 immediately after external ATP addition but fell toward zero as the pH gradient increased to a new steady state. These 31P NMR results agree with intragranular pH measurements determined from methylamine distribution and with H+/ATP stoichiometries calculated from pH changes observed in the external medium.  相似文献   

7.
The dye, oxonol-V (bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol), can be used to estimate the transmembrane potential of chromaffin granules. The potentials result either from a resting-state Donnan equilibrium (inside negative at pH 6.6) or from an ATP-driven proton pump. The fluorescence and absorption changes generated by ATP addition depended on the pH of the medium and the dye-to-vesicle ratio. Energization resulted in an increase in the number of oxonol-V binding sites, the new binding sites having the same dissociation constant. The rate of dye association was higher with resting than with energized chromaffin granules. The absorption change was associated with a red shift whereas the fluorescence change involved a quenching due to the increase in dye concentration on the membrane. The absorption and fluorescence changes varied linearly with the transmembrane potential difference when the interior potential was positive relative to the medium.  相似文献   

8.
A Warashina 《FEBS letters》1985,184(1):87-89
The average size of chromaffin granules isolated from bovine adrenal medullae was analyzed by a quasi-elastic laser light scattering method. The granule diameter increased by a factor of 1.3 by addition of Mg-ATP in the medium. The ATP effect was completely suppressed in the presence of an anion transport blocker (SITS), and partly depressed by a proton transport blocker (DCCD).  相似文献   

9.
1. pH and potential gradients are generated across the membranes of chromaffin granule 'ghost' by incubating them with MgATP: the inside of the 'ghosts' is positive and acid with respect to the incubation medium. 2. The pH gradient is partially dissipated by inclusion of a substrate for the catecholamine pump, or a mitochondrial uncoupling agent, but is enhanced by reserpine. 3. An imposed pH gradient leads to amine uptake by the 'ghosts': a potential gradient leads to ATP uptake. Studies with inhibitors confirm that amine accumulation by chromaffin granules is dependent on the former, and that ATP uptake results from ATPase-induced potential difference generation. 4. ATP has two known roles in chromaffin granule structure: the first is as a substrate for a membrane-bound proton-translocating ATPase; the second is as a component of the intragranular catecholamine storage complex.  相似文献   

10.
An osmotic mechanism for exocytosis from dissociated chromaffin cells   总被引:7,自引:0,他引:7  
Dissociated chromaffin cells from bovine adrenal medulla were stimulated to secrete epinephrine and dopamine beta-hydroxylase with a variety of secretagogues in a study designed to test the hypothesis that the chemiosmotic lysis reaction of isolated chromaffin granules might in some way be related to the mechanism of release during exocytosis. Increasing the osmotic strength of the incubation medium with either NaCl or sucrose led to suppression of secretion of epinephrine from the cells regardless of whether secretion was induced with veratridine or acetylcholine. Suppression of secretion was approximately exponential with respect to osmotic strength. Epinephrine secretion occurred only if the medium contained a permeant anion such as chloride, and secretion induced by veratridine was suppressed when Na isethionate replaced NaCl in the medium. In an extensive study with different monovalent anions veratridine supported epinephrine secretion according to the following activity series: Br-, I-, NO3- greater than methylsulfate, SCN- greater than Cl greater than acetate much greater than isethionate. A similar series, except for the potency of NO3-, was observed with A23187 as agonist. In general, the anion series for granule lysis was analogous. However, there was a poor quantitative correlation between the anion dependence of chemiosmotic granule lysis and the anion dependence of cell secretion. Anion transport inhibitors such as probenecid and pyridoxal phosphate also inhibited secretion while the stilbene disulfonates were inactive. The ineffectiveness of the stilbene disulfonates further distinguished chemiosmotic granule lysis from cell secretion. Secretion of catecholamines, induced by veratridine or nicotine, a cholinergic agonist, was suppressed when NaCl in the medium was replaced by isosmotic sucrose and unexpectedly low levels of dopamine beta-hydroxylase were observed in some cases. In sum, these properties of secreting chromaffin cells resembled some properties of isolated chromaffin granules incubated in ATP and Cl-, but were different in a number of instances. We, therefore, have interpreted our data to indicate that while some mechanistic relationships may indeed exist between the release event in exocytosis from chromaffin cells and the chemiosmotic lysis reaction characteristic of isolated chromaffin granules, an understanding of the energetics of exocytosis awaits the discovery of reasons for the quantitative differences between the two systems.  相似文献   

11.
Abstract: The uptake of nucleotides and Catecholamines into chromaffin granules from adrenals of pigs and horses is similar to that previously seen in bovine chromaffin granules. The rate of [3H]ATP uptake at 2 mM-ATP concentration was 0.42 ± 0.06 and 0.15 ± 0.02 nmol/mg protein/min for pig and horse granules, respectively. The apparent Km's were 1.37 mM for pig granules, 0.89 mM for horse granules, and 1.2 mM for ox granules. The sensitivity of the uptake for nucleotides and catecholamine to specific inhibitors was found to be similar in granules from pig and ox, indicating that the same mechanisms of uptake are involved in both species.  相似文献   

12.
Glucocorticoid is reported to regulate catecholamine synthesis and storage. However, it is not clear whether the actual amount of catecholamine released from individual granules (quantal size, Q) in mature chromaffin cells is affected by glucocorticoid. Using carbon fiber amperometry, we found that dexamethasone did not affect mean cellular Q or the proportional release from different populations of granules in rat chromaffin cells cultured for 1 day in a serum-free defined medium. After two extra days of culture in the defined medium, there was a rundown in mean cellular Q, and it was associated with a shift in the proportional release from the different granule populations. This phenomenon could not be rescued by serum supplementation but could be prevented by dexamethasone via an action that was independent of changes in voltage-gated Ca2+ channel (VGCC) density. Using simultaneous measurements of membrane capacitance and cytosolic Ca2+ concentration, we found that for cells cultured in defined medium dexamethasone enhanced the exocytotic response triggered by a brief depolarization (50 ms) without affecting the VGCC density or the fast exocytotic response triggered via flash photolysis of caged Ca2+. Thus glucocorticoid may regulate the number of immediately releasable granules that are in close proximity to a subset of VGCC. Because chromaffin cells in vivo are exposed to high concentrations of glucocorticoid, our findings suggest that the paracrine actions of glucocorticoid maintain the mean catecholamine content in chromaffin cell granules as well as the colocalization of releasable granules with VGCCs. catecholamines; paracrine action; exocytosis; calcium channels  相似文献   

13.
THe quantum yield, the life time and the degree of polarization of the fluorescence of intact chromaffin granules isolated from bovine adrenal medulla were compared to those of catecholamines solutions and catecholamine/ATP mixtures. Rising concentrations of catecholamines in aqueous solutions exhibited increasing quenching and decreasing life times indicating that the quenching was collision induced. Similar effects occurred in mixtures of catecholamines with ATP and Ca2+ showing that the nucleotide did not remarkedly hinder the mobility of the catechol group. In suspensions of whole granules stron quenching and shortening of life time was observed compared with solutions of disrupted granules. Fluorescence yield and life time were decreased by about the same factor suggesting that storage of the amines was not correlated with a major immobilization of the catechol group. The degree of polarization of intact granules was higher than that of solutions of catecholamines alone, but similar to catecholamine/ATP mixtures with concentrations corresponding to those found in the granules. This indicates an interaction of catecholamines with ATP in the granules. The results are in agreement with a storage model for catecholamines in the chromaffin granules of adrenal medulla in which catecholamines are bound to ATP, but in a non-rigid way.  相似文献   

14.
1. The influence of various substances on the uptake of [3H]ATP and [14C]-noradrenaline into isolated bovine chromaffin granules was investigated. The carrier-mediated [3H]ATP uptake is specifically inhibited by SO42-, PO43- and phosphoenolpyruvate. Compounds with carboxylic acid or sulphonic acid groups had no significant inhibitory effects on either uptake. 2. 35SO42-, 32PO43- and phosphoenol[14C]pyruvate are taken up into chromaffin granules by a temperature-dependent process that is inhibited by atractyloside, uncouplers of oxidative phosphorylation and lipid-permeant anions. The apparent Km of 35SO42- uptake is 0.4 mM. 3. These results indicate that the nucleotide carrier in chromaffin granules has a broad specificity, transporting compounds with two strong negative charges. 4. Amino acid probes influence the uptake of ATP and catecholamines differently. Pyridoxal phosphate inhibits both uptake processes, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid preferentially blocks ATP uptake, whereas phenylglyoxal blocks only ATP transport. It is suggested that the nucleotide carrier possesses arginine residues in a functionally important position. 5. The significance of these results obtained on isolated granules for the function of chromaffin granules within the cell is discussed.  相似文献   

15.
Adenosine triphosphate (ATP) induces the release of catecholamines, endogenous ATP, and soluble protein from chromaffin granules isolated from the adrenal medulla. When ATP exerts this action, it is hydrolyzed by enzymes present in the granule membrane, and part of the Pi liberated from ATP is transferred to the protein and lipid of the granule membrane. The phosphorylated lipid component, which was identified by thin-layer and ion-exchange chromatography as diphosphatidylinositol, was formed from ATP and monophosphatidylinositol. This latter phospholipid was the substrate for the enzyme phosphatidylinositol kinase. Both substrate and enzyme are components of the granule membranes, because they have a similar subcellular distribution as dopamine beta-hydroxylase (a granule membrane marker). The formation of diphosphatidylinositol was Mg(2 plus)-dependent, it was further stimulated by Mn(2 plus), it was inhibited by N-ethylmaleimide and the reaction had an optimal pH of 5. The synthesis of diphosphatidylinositol was also shown to occur in chromaffin granules "in situ". during the stimulation of the adrenal medulla by acetylcholine.  相似文献   

16.
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present.  相似文献   

17.
ATP stimulated the accumulation of 45Ca2+ by chromaffin granule ghosts which contained 5 mM oxalate to trap transported calcium within the lumen. Inasmuch as the ATP-dependent 45Ca2+ transport was resistant to 25 mM ammonium acetate as well as the proton ionophore, carbonylcyanide-m-chlorophenylhydrazone, the chromaffin granule proton translocating ATPase does not provide the energy for this process. Instead, we suggest that chromaffin granules contain a calcium translocating ATPase which catalyzes the 45Ca2+ uptake directly. The observation that chromaffin granules bind to a monoclonal antibody raised against a calcium pump from bovine brain supports this hypothesis.  相似文献   

18.
Ascorbic acid and Mg-ATP were found to regulate norepinephrine biosynthesis in intact secretory vesicles synergistically and specifically, using the model system of isolated bovine chromaffin granules. Dopamine uptake into chromaffin granules was shown to be unrelated to the presence of Mg-ATP and ascorbic acid at external dopamine concentrations of 7.5 and 10 mM. Under these conditions of dopamine uptake, norepinephrine biosynthesis was enhanced 5-6-fold by Mg-ATP and ascorbic acid compared to control experiments with dopamine only. Furthermore, norepinephrine formation was enhanced approximately 3-fold by ascorbic acid and Mg-ATP together compared to norepinephrine formation in granules incubated with either substance alone. The action of Mg-ATP and ascorbic acid together was synergistic and independent of dopamine content of chromaffin granules as well as of dopamine uptake. The apparent Km of norepinephrine formation for external ascorbic acid was 376 microM and for external Mg-ATP was 132 microM, consistent with the larger amounts of cytosolic ascorbic acid and ATP that are available to chromaffin granules. Other physiologic reducing agents were not able to increase norepinephrine biosynthesis in the presence or absence of Mg-ATP. In addition, maximum enhancement of norepinephrine biosynthesis occurred only with the nucleotide ATP and the cation magnesium. The mechanism of the effect of ascorbic acid and Mg-ATP on norepinephrine biosynthesis was investigated and appeared to be independent of a positive membrane potential. The effect was also not mediated by direct action of ADP, ATP, or magnesium on the activity of soluble or particulate dopamine beta-monooxygenase. These data indicate that Mg-ATP and ascorbic acid specifically and synergistically co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules, independent of substrate uptake. Although the mechanism is not known, the data are consistent with the possibility that the chromaffin granule ATPase mediates these effects.  相似文献   

19.
Vanadate-sensitive ATPase (115 kDa molecular weight) in adrenal chromaffin granules is an intrinsic membrane enzyme with its catalytic site located at the outer surface of the granules. Upon incubation with [gamma-32P]ATP, the purified ATPase formed an alkaline-labile phosphoenzyme intermediate, which was inhibited by vanadate but not by Na+ or K+. Ratio of ATPase or phosphatase activity and formation of phosphoenzyme intermediate was constant during purification after the first glycerol density gradient centrifugation. Phosphatidylserine specifically activated the enzyme about three-fold by increasing the Vmax value without changing the Km for ATP. Other phospholipids, including phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, as well as lysophospholipids and detergents, had no effect. These results indicated that the vanadate-sensitive ATPase belongs to the P-type ATPases, which differ from known cation-translocating P-type ATPases.  相似文献   

20.
The transmembrane potential of isolated chromaffin granules has been measured using the permeant ions [14C]methylamine and [35S]thiocyanate, as well as the fluorescent probe, 9-aminoacridine. At pH 7.0, the granule membrane had a Nernst proton potential of -45mV, inside negative. This potential was sensitive to the external pH, but was unaffected by K+,Na+, Ca2+, Mg2+, or other cations. The pH of zero potential was 6.25 for both methylamine and thiocyanate. Thiocyanate also had a Nernst potential of similar magnitude and sign to that of methylamine at pH 7.0, and was also sensitive to variation in external pH. Mg2+ATP was found to depolarize the granule membrane by a saturable mechanism with a K 1/2 for ATP of 40 muM. Ca2+ was only 30% as effective as Mg2+ in supporting the ATP effect. The pH optimum for this process was 6.25 and appeared to be accompanied by a marked alkalinization of the granule interior. The specificity for ATP was further tested with structural analogs of ATP and GTP. The rate of change of membrane potential in response to changes in external pH or Mg2+ATP was estimated using the fluorescent probe 9-aminoacridine. Changes came to completion in less than 1 s. This suggested that the ATP effects were not dependent on an enzymatic transformation but on an ATP-induced conformational change in the membrane. We conclude that the chromaffin granule exists in at least two proton permeability states, corresponding to the presence or absence of Mg2+ATP. These states may be related to hormone release from granules and regulation of secretion in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号