首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune functions are costly, and immune investment is usually dependent on the individual''s condition and resource availability. For phytophagous insects, host plant quality has large effects on performance, for example growth and survival, and may also affect their immune function. Polyphagous insects often experience a large variation in quality among different host plant species, and their immune investment may thus vary depending on which host plant species they develop on. Larvae of the polyphagous moth Spodoptera littoralis have previously been found to exhibit density‐dependent prophylaxis as they invest more in certain immune responses in high population densities. In addition, the immune response of S. littoralis has been shown to depend on nutrient quality in experiments with artificial diet. Here, I studied the effects of natural host plant diet and larval density on a number of immune responses to understand how host plant species affects immune investment in generalist insects, and whether the density‐dependent prophylaxis could be mediated by host plant species. While host plant species in general did not mediate the density‐dependent immune expression, particular host plant species was found to increase larval investment in certain functions of the immune system. Interestingly, these results indicate that different host plants may provide a polyphagous species with protection against different kinds of antagonisms. This insight may contribute to our understanding of the relationship between preference and performance in generalists, as well as having applied consequences for sustainable pest management.  相似文献   

2.
Ecological hypotheses of plant–insect herbivore interactions suggest that insects perform better on weakened plants and plants grown under optimal conditions are less damaged. This study tested the hypothesis that the colonization and oviposition rates by pests with different feeding strategies and levels of specialization are affected in different ways by two conditions commonly faced by commercially grown plants–water deficit and application of kaolin sprays, a reducer of abiotic plant stressors. We used four major pests of cotton as insect herbivore models. Three were chewing Lepidoptera: Alabama argillacea (Hüb.), a monophagous pest on cotton; Heliothis virescens (Fabr.), which is polyphagous, but with cotton as a primary host; and Chrysodeixis includens (Walk.), which is polyphagous, with cotton as secondary host. The fourth pest was a sap-sucking species, the polyphagous whitefly Bemisia tabaci (Gen.). In both choice and no-choice trials, the three chewing pests oviposited significantly less upon water-stressed plants; the greatest effect was observed for C. includens (>90 % reduction in oviposition under choice and >58 % under no-choice conditions). In contrast, the sap-sucking B. tabaci exhibited statistically more colonization and oviposition on water-stressed plants. Application of kaolin sprays reduced colonization and oviposition by all herbivore species tested, irrespective of irrigation regime and feeding strategies.  相似文献   

3.
Insects tend to feed on related hosts. Coevolution tends to be dominated by interactions resulting from plant chemistry in defense strategies, and evolution of secondary metabolisms being in response to insect herbivory remains a classic explanation of coevolution. The present study examines whether evolutionary constraints existing in host associations of economically important fruit flies in the species‐rich tribe Dacini (Diptera: Tephritidae) and to what extent these species have evolved specialized dietary patterns. We found a strong effect of host phylogeny on associations on the 37 fruit flies tested, although the fruit fly species feeding on ripe commercially grown fruits that lost the toxic compounds after long‐term domestication are mostly polyphagous. We assessed the phylogenetic signal of host breadth across the fruit fly species, showing that the results were substantially different depending on partition levels. Further, we mapped main host family associations onto the fruit fly phylogeny and Cucurbitaceae has been inferred as the most likely ancestral host family for Dacini based on ancestral state reconstruction.  相似文献   

4.
Nocturnal moths are important pollinators of plants. The clover cutworm, Hadula trifolii, is a long‐distance migratory nocturnal moth. Although the larvae of H. trifolii are polyphagous pests of many cultivated crops in Asia and Europe, the plant species pollinated by the adult are unclear. Pollen species that were attached to individual migrating moths of H. trifolii were identified based on pollen morphology and DNA to determine their host plants, geographic origin, and pollination areas. The moths were collected on their seasonal migration pathway at a small island, namely Beihuang, in the center of the Bohai Sea of China during 2014 to 2018. Pollen was detected on 28.60% of the female moths and 29.02% of the male, mainly on the proboscis, rarely on compound eyes and antennae. At least 92 species of pollen from 42 plant families, mainly from Asteraceae, Amaranthaceae, and Pinaceae, distributed throughout China were found on the test moths. Migratory H. trifolii moths visited herbaceous plants more than woody plants. Pollen of Macadamina integrifolia or M. tetraphylla was found on moths early in the migratory season. These two species are distributed in Guangdong, Yunnan, and Taiwan provinces in China, indicating that migratory moths probably traveled about 2000 km from southern China to the Beihuang Island in northern China. Here, by identifying plant species using pollen, we gained a better understanding of the interactions between H. trifolii moths and a wide range of host plants in China. This work provides valuable and unique information on the geographical origin and pollination regions for H. trifolii moths.  相似文献   

5.
Rex G. Cates 《Oecologia》1980,46(1):22-31
Summary Leaf tissue preferences of monophagous, oligophagous, and polyphagous insect herbivores were determined using young and mature leaf tissue abundances and herbivore feeding observations. Larvae of monophagous and oligophagous herbivores preferred young leaf tissues while, overall, larvae of polyphagous species preferred mature leaves of their various host plants. Even though a species is often polyphagous over its geographical range, larvae from local populations may be very specialized in their diet. When this occurs these specialized larvae prefer the more nutritious and perhaps more toxic young leaves of some of their host plants. Resource abundance and plant chemistry are discussed as major factors influencing herbivore feeding patterns.  相似文献   

6.
A central goal in ecology is to predict what governs a species’ ability to establish in a new environment. One mechanism driving establishment success is individual species’ traits, but the role of trait combinations among interacting species across different trophic levels is less clear. Deliberate or accidental species additions to existing communities provide opportunities to study larger scale patterns of establishment success. Biological control introductions are especially valuable because they contain data on both the successfully established and unestablished species. Here, we used a recent dataset of importation biological control introductions to explore how life‐history traits of 132 parasitoid species and their herbivorous hosts interact to affect parasitoid establishment. We find that of five parasitoid and herbivore traits investigated, one parasitoid trait—host range—weakly predicts parasitoid establishment; parasitoids with higher levels of phylogenetic specialization have higher establishment success, though the effect is marginal. In addition, parasitoids are more likely to establish when their herbivore host has had a shorter residence time. Interestingly, we do not corroborate earlier findings that gregarious parasitoids and endoparasitoids are more likely to establish. Most importantly, we find that life‐history traits of the parasitoid species and their hosts can interact to influence establishment. Specifically, parasitoids with broader host ranges are more likely to establish when the herbivore they have been released to control is also more of a generalist. These results provide insight into how multiple species’ traits and their interactions, both within and across trophic levels, can influence establishment of species of higher trophic levels.  相似文献   

7.
The esterase enzymes are a major component of insect detoxification systems and play a crucial role in hydrolyzing lots of xenobiotic compounds. Among insect, generalist herbivores can exhibit developed biochemical defences as a result of exposing to a wide range of plant chemical compounds. To overcome this ability, host plants may affect the level of hydrolases in herbivore insects feeding on. To examine this hypothesis, in the present study total esterase activity was investigated in a highly polyphagous whitefly, Bemisia tabaci, reared on six different varieties of cotton, Gossypium hirsutum. Results showed significant differences in esterase activity of B. tabaci feeding on the host plant varieties. The highest esterase activities were detected in whiteflies feeding on Sk-Tb and Siokra varieties, whereas those whiteflies that feed on Hopicala variety exhibited the least esterase activities. Our findings highlight the important role of host plants in detoxification ability of herbivore insects. The importance of these findings in biology of insect pests and their applications in integrated pest management programmes of B. tabaci have been discussed in detail.  相似文献   

8.
Herbivorous insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar‐associated bacteria both directly and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.  相似文献   

9.
Evolutionary experience and the phylogenetic relationships of plants have both been proposed to influence herbivore–plant interactions and plant invasion success. However, the direction and magnitude of these effects, and how such patterns are altered with increasing temperature, are rarely studied. Through laboratory functional response experiments, we tested whether the per capita feeding efficiency of an invasive generalist herbivore, the golden apple snail, Pomacea canaliculata, is dependent on the biogeographic origin and phylogenetic relatedness of host plants, and how increasing temperature alters these dependencies. The feeding efficiency of the herbivore was highest on plant species with which it had no shared evolutionary history, that is, novel plants. Further, among evolutionarily familiar plants, snail feeding efficiency was higher on those species more closely related to the novel plants. However, these biogeographic dependencies became less pronounced with increasing temperature, whereas the phylogenetic dependence was unaffected. Collectively, our findings indicate that the susceptibility of plants to this invasive herbivore is mediated by both biogeographic origin and phylogenetic relatedness. We hypothesize that warming erodes the influence of evolutionary exposure, thereby altering herbivore–plant interactions and perhaps the invasion success of plants.  相似文献   

10.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   

11.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.  相似文献   

12.
In insects, like in other animals, experience‐based modulation of preference, a form of phenotypic plasticity, is common in heterogeneous environments. However, the role of multiple fitness‐relevant experiences on insect preference remains largely unexplored. For the multivoltine polyphagous moth Spodoptera littoralis we investigated effects of larval and adult experiences on subsequent reproductive behaviours. We demonstrate, for the first time in male and female insects, that mating experience on a plant modulates plant preference in subsequent reproductive behaviours, whereas exposure to the plant alone or plant together with sex pheromone does not affect this preference. When including larval feeding experiences, we found that both larval rearing and adult mating experiences modulate host plant preference. These findings represent the first evidence that host plant preferences in polyphagous insects are determined by a combination of innate preferences modulated by sensory feedback triggered by multiple rewarding experiences throughout their lifetime.  相似文献   

13.
In fragmented forests, edge effects can drive intraspecific variation in seedling performance that influences forest regeneration and plant composition. However, few studies have attempted to disentangle the relative biotic and abiotic drivers of intraspecific variation in seedling performance. In this study, we carried out a seedling transplant experiment with a factorial experimental design on three land‐bridge islands in the Thousand Island Lake, China, using four common native woody plant species. At different distances from the forest edge (2, 8, 32, 128 m), we transplanted four seedlings of each species into each of three cages: full‐cage, for herbivore exclusion; half‐cage, that allowed herbivore access but controlled for caging artifacts; and no‐cage control. In the 576 cages, we recorded branch architecture, leaf traits, and seedling survival for each seedling before and after the experimental treatment. Overall, after one full growing season, edge‐induced abiotic drivers and varied herbivory pressure led to intraspecific variation in seedling performance, including trade‐offs in seedling architecture and resource‐use strategies. However, responses varied across species with different life‐history strategies and depended on the driver in question, such that the abiotic and biotic effects were additive across species, rather than interactive. Edge‐induced abiotic variation modified seedling architecture of a shade‐tolerant species, leading to more vertical rather than lateral growth at edges. Meanwhile, increased herbivory pressure resulted in a shift toward lower dry matter investment in leaves of a light‐demanding species. Our results suggest that edge effects can drive rapid directional shifts in the performance and intraspecific traits of some woody plants from early ontogenetic stages, but most species in this study showed negligible phenotypic responses to edge effects. Moreover, species‐specific responses suggest the importance of interspecific differences modulating the degree of trait plasticity, implying the need to incorporate individual‐level responses when understanding the impact of forest fragmentation on plant communities.  相似文献   

14.
Understanding the novel ecological interactions that result from biological invasions is a critical issue in modern ecology and evolution as well as pest management. Introduced herbivorous insects may interact with native plants and indigenous natural enemies, creating novel tri‐trophic interactions. To help predict the potential outcomes of novel interactions, we investigated the behavioural and physiological responses of an indigenous generalist parasitoid (Habrobracon gelechiae) to an introduced generalist herbivore (the light brown apple moth, Epiphyas postvittana) and its new host plants in California. We first examined the parasitoid's host location and acceptance on a range of nine common host plants of the moth representing distinctly different geographic origins and morphologies (to examine the effect of a known toxic plant on the parasitoid's performance, an additional toxic plant species was also tested that the moth consumes in the laboratory but does not naturally attack). The parasitoid was able to locate the host larvae on all plants equally well, although clutch size was affected by host plant. We then determined fitness of the moth and the parasitoid on four representative plants. The moth larvae suffered higher mortality and a slower developmental rate on the known toxic plant than on the other three plants, but the parasitoid's fitness correlates did not differ between the host food plants. These results show a high level of plasticity in the indigenous generalist parasitoid in its ability to exploit the exotic host on a wide range of host plants, generating an invasion‐driven novel tri‐trophic interaction.  相似文献   

15.
Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density‐dependent mortality of conspecific seedlings (C‐NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper‐diversity in many tropical forests. A key question is whether fungal pathogen‐mediated C‐NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C‐NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species‐rich forests of South East Asia. We demonstrate species‐specific responses of seedlings to fungicide and density treatments, generating weak negative density‐dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen‐Connell mechanisms structure the plant communities of this globally important forest type.  相似文献   

16.
Host-parasite systems have been models for understanding the connection between shifts in resource use and diversification. Despite theoretical expectations, ambiguity remains regarding the frequency and importance of host switches as drivers of speciation in herbivorous insects and their parasitoids. We examine phylogenetic patterns with multiple genetic markers across three trophic levels using a diverse lineage of geometrid moths (Eois), specialist braconid parasitoids (Parapanteles) and plants in the genus Piper. Host-parasite associations are mapped onto phylogenies, and levels of cospeciation are assessed. We find nonrandom patterns of host use within both the moth and wasp phylogenies. The moth-plant associations in particular are characterized by small radiations of moths associated with unique host plants in the same geographic area (i.e. closely related moths using the same host plant species). We suggest a model of diversification that emphasizes an interplay of factors including host shifts, vicariance and adaptation to intraspecific variation within hosts.  相似文献   

17.
Rex G. Cates 《Oecologia》1981,48(3):319-326
Summary Host plant preferences for 34 insect herbivore species are reported. Most polyphagous herbivores feeding on annuals, herbaceous perennials, and woody perennials show distinct preferences for the least abundant plant species among their various host plants. In addition, some populations of widely distributed polyphagous species are much more specialized in their diet than host plant lists alone would suggest. The high level of polyphagy on annuals and herbaceous perennials is suggested to be strongly influenced by the unpredictability of the host plant that is, in turn, controlled by environmental variability. Oligophagous herbivores preferred the least abundant woody perennials on the study sites. Ten of the 22 monophagous herbivores preferred the rarest of all the plant species on the same sites.  相似文献   

18.
Plant–herbivore–parasitoid interactions are a common occurrence in terrestrial food webs. Few parasitoids are thought to be shared by host insects of different feeding guilds because different parasitism strategies are required to use hosts of different feeding types. However, this assumption has rarely been tested using data from nature. To clarify whether parasitoids are shared among host guilds, I examined the structure of parasitoid communities on herbivore guilds associated with two Rhododendron species (Ericaceae) in a temperate secondary forest in central Japan. Leaf- and flower-feeding insects were collected from Rhododendron reticulatum and Rhododendron macrosepalum shrubs and reared in the laboratory for 3 years from April 1999 to March 2002. In total, 79 species of holometabolous herbivores (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) were recorded, with 62 species on R. reticulatum and 51 species on R. macrosepalum. A total of 81 parasitoid species (Hymenoptera and Diptera) was recorded from the sampled herbivores, with 48 species from those on R. reticulatum and 50 species from those on R. macrosepalum. In total, 36 herbivore species were parasitised by 1–18 parasitoid species per host species, although the number of parasitoid species was strongly affected by sample size. Parasitoids that had two or more host species frequently attacked herbivore species from different families or on different host plants, whereas they did not attack species from different herbivore guilds; no parasitoids were shared between external feeders and rollers. Therefore, my results support the hypothesis that few parasitoids are shared among herbivores of different feeding guilds.  相似文献   

19.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

20.
Intraspecific interactions can change from facilitative to competitive depending on the organism''s ontogeny. In plant‐feeding insects, host plant defenses can be strengthened or weakened by insect feeding and can therefore be important for determining whether two insects feeding on the same plant help or harm each other''s fitness. Here, I conducted two experiments looking at the direct effect of a physical seed defense and the role of intraspecific facilitation in reducing the effects of that defense for juveniles of the red‐shouldered soapberry bug. I demonstrate that juveniles are severely inhibited by the tough seed coat of their host plant, leading to high mortality early in development. Adults, in contrast, can create holes through which younger individuals could potentially feed. I manipulated whether or not seeds were fed on by adults on two host plant species: a well‐defended native host and a poorly defended introduced host. Survival in the first week of development was dramatically improved by prior adult feeding, and this facilitation was stronger on the well‐defended host plant. However, the benefits of prior adult feeding ceased after the first week of development and shifted to having a negative effect on survival, development time, and body size. These results indicate that ontogeny is a key factor determining the effects of plant defenses and the strength and direction of intraspecific interactions across multiple host plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号