首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal ischemia–reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia–reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia–reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.  相似文献   

2.
How p53 participates in acute kidney injury (AKI) progress and what are the underlying mechanisms remain illusive. For this issue, it is important to probe into the role of p53 in cisplatin-induced AKI. We find that p53 was upregulated in cisplatin-induced AKI, yet, pifithrin-α inhibites the p53 expression to attenuated renal injury and cell apoptosis both in vivo cisplatin-induced AKI mice and in vitro HK-2 human renal tubular epithelial cells. To knock down p53 by siRNA significantly decreased the miRNA, miR-199a-3p, expression in HK-2 cells. Blockade of miR-199a-3p significantly reduced cisplatin-induced cell apoptosis and inhibited caspase-3 activity. Mechanistically, we identified that miR-199a-3p directly bound to mechanistic target of rapamycin (mTOR) 3′-untranslated region and overexpressed miR-199a-3p reduce the expression and phosphorylation of mTOR. Furthermore, we demonstrated that p53 inhibited mTOR activation through activating miR-199a-3p. In conclusion, our findings reveal that p53, upregulating the expression of miR-199a-3p affects the progress of cisplatin-induced AKI, which might provide a promising therapeutic target of AKI.  相似文献   

3.
4.
Cisplatin is one of the most effective anti-cancer drugs; however, the use of cisplatin is limited by its toxicity in normal tissues, particularly injury of the kidneys. The mechanisms underlying the therapeutic effects of cisplatin in cancers and side effects in normal tissues are largely unclear. Recent work has suggested a role for p53 in cisplatin-induced renal cell apoptosis and kidney injury; however, the signaling pathway leading to p53 activation and renal apoptosis is unknown. Here we demonstrate an early DNA damage response during cisplatin treatment of renal cells and tissues. Importantly, in the DNA damage response, we demonstrate a critical role for ATR, but not ATM (ataxia telangiectasia mutated) or DNA-PK (DNA-dependent protein kinase), in cisplatin-induced p53 activation and apoptosis. We show that ATR is specifically activated during cisplatin treatment and co-localizes with H2AX, forming nuclear foci at the site of DNA damage. Blockade of ATR with a dominant-negative mutant inhibits cisplatin-induced p53 activation and renal cell apoptosis. Consistently, cisplatin-induced p53 activation and apoptosis are suppressed in ATR-deficient fibroblasts. Downstream of ATR, both Chk1 and Chk2 are phosphorylated during cisplatin treatment in an ATR-dependent manner. Interestingly, following phosphorylation, Chk1 is degraded via the proteosomal pathway, whereas Chk2 is activated. Inhibition of Chk2 by a dominant-negative mutant or gene deficiency attenuates cisplatin-induced p53 activation and apoptosis. In vivo in C57BL/6 mice, ATR and Chk2 are activated in renal tissues following cisplatin treatment. Together, the results suggest an important role for the DNA damage response mediated by ATR-Chk2 in p53 activation and renal cell apoptosis during cisplatin nephrotoxicity.  相似文献   

5.
Histone methylation at specific lysine residues brings about various downstream events that are mediated by different effector proteins. The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here we report the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. The structures reveal that WDR5 is able to bind all of these histone H3 peptides, but only H3K4me2 peptide forms extra interactions with WDR5 by use of both water-mediated hydrogen bonding and the altered hydrophilicity of the modified lysine 4. We propose a mechanism for the involvement of WDR5 in binding and presenting histone H3K4 for further methylation as a component of MLL complexes.  相似文献   

6.
The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a “two-active site” model for multiple H3K4 methylation by the MLL1 core complex.  相似文献   

7.
8.
The mixed lineage leukemia protein-1 (MLL1) catalyzes histone H3 lysine 4 methylation and is regulated by interaction with WDR5 (WD-repeat protein-5), RbBP5 (retinoblastoma-binding protein-5), and the Ash2L (absent, small, homeotic discs-2-like) oncoprotein. In the accompanying investigation, we describe the identification of a conserved arginine containing motif, called the "Win" or WDR5 interaction motif, that is essential for the assembly and H3K4 dimethylation activity of the MLL1 core complex. Here we present a 1.7-A crystal structure of WDR5 bound to a peptide derived from the MLL1 Win motif. Our results show that Arg-3765 of MLL1 is bound in the same arginine binding pocket on WDR5 that was previously suggested to bind histone H3. Thermodynamic binding experiments show that the MLL1 Win peptide is preferentially recognized by WDR5. These results are consistent with a model in which WDR5 recognizes Arg-3765 of MLL1, which is essential for the assembly and enzymatic activity of the MLL1 core complex.  相似文献   

9.
Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi''s sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.  相似文献   

10.
11.
12.
13.
14.
MLL complexes are homologs of yeast COMPASS capable of methylating histone H3 Lys4 (H3K4). ASH2L, RbBP5 and WDR5 are conserved subunits of MLL complexes with homology to the Cps40/Cps60, Cps50 and Cps30 subunits of COMPASS, respectively. We report that ASH2L differentially regulates MLL's catalysis of H3K4 trimethylation similarly to Cps40 and Cps60. Furthermore, WDR5 is required to maintain MLL complex integrity, including the stability of ASH2L within the complex. These findings offer insight into the molecular role of ASH2L, and by extension that of WDR5, in proper H3K4 trimethylation.  相似文献   

15.
16.
17.
18.
The protein-protein interaction between WDR5 (WD40 repeat protein 5) and MLL1 (mixed-lineage leukemia 1) is important for maintaining optimal H3K4 methyltransferase activity of MLL1. Dysregulation of MLL1 catalytic function is relevant to mixed-lineage leukemia, and targeting WDR5-MLL1 interaction could be a promising therapeutic strategy for leukemia harboring MLL1 fusion proteins. To date, several peptidomimetic and non-peptidomimetic small-molecule inhibitors targeting WDR5-MLL1 interaction have been reported, yet the discovery walk of new drugs inhibiting MLL1 methytransferase activity is still in its infancy. It’s urgent to find other small-molecule WDR5-MLL1 inhibitors with novel scaffolds. In this study, through fluorescence polarization (FP)-based high throughput screening, several small-molecule inhibitors with potent inhibitory activities in vitro against WDR5-MLL1 interaction were discovered. Nuclear Magnetic Resonance (NMR) assays were carried out to confirm the direct binding between hit compounds and WDR5. Subsequent similarity-based analog searching of the 4 hits led to several inhibitors with better activity, among them, DC_M5_2 displayed highest inhibitory activity with IC50 values of 9.63?±?1.46?µM. Furthermore, a molecular docking study was performed and disclosed the binding modes and interaction mechanisms between two most potent inhibitors and WDR5.  相似文献   

19.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

20.
The MLL3 (mixed lineage leukemia 3) protein is a member of the human SET1 family of histone H3 lysine 4 methyltransferases and contains the conserved WDR5 interaction (Win) motif and the catalytic suppressor of variegation, enhancer of zeste, trithorax (SET) domain. The human SET1 family includes MLL1–4 and SETd1A/B, which all interact with a conserved subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD) to form the minimal core complex required for full methyltransferase activity. However, recent evidence suggests that the WDR5 subunit may not be utilized in an identical manner within all SET1 family core complexes. Although the roles of WDR5 within the MLL1 core complex have been extensively studied, not much is known about the roles of WDR5 in other SET1 family core complexes. In this investigation, we set out to characterize the roles of the WDR5 subunit in the MLL3 core complex. We found that unlike MLL1, the MLL3 SET domain assembles with the RbBP5/Ash2L heterodimer independently of the Win motif-WDR5 interaction. Furthermore, we observed that WDR5 inhibits the monomethylation activity of the MLL3 core complex, which is dependent on the Win motif. We also found evidence suggesting that the WRAD subcomplex catalyzes weak H3K4 monomethylation within the context of the MLL3 core complex. Furthermore, solution structures of the MLL3 core complex assembled with and without WDR5 by small angle x-ray scattering show similar overall topologies. Together, this work demonstrates a unique role for WDR5 in modulating the enzymatic activity of the MLL3 core complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号