首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.

Objective

Current biomarkers cannot completely distinguish sepsis from systemic inflammatory response syndrome (SIRS) caused by other non-infectious diseases. Circulating microRNAs (miRNAs) are promising biomarkers for several diseases, but their correlation with sepsis is not totally clarified.

Methods

Seven miRNAs related to inflammation or infection were included in the present study. Serum miRNA expression was investigated in 50 patients diagnosed with sepsis, 30 patients with SIRS and 20 healthy controls to evaluate the diagnostic and prognostic value. Expression levels of serum miRNAs were determined by quantitative PCR using the Qiagen miScript system. Serum CRP and IL-6 levels were determined by enzyme linked immunosorbent assay.

Results

Serum miR-146a and miR-223 were significantly reduced in septic patients compared with SIRS patients and healthy controls. The areas under the receiver operating characteristic curve of miR-146a, miR-223 and IL-6 were 0.858, 0.804 and 0.785, respectively.

Conclusion

Serum miR-146a and miR-223 might serve as new biomarkers for sepsis with high specificity and sensitivity. (ClinicalTrials.gov number, NCT00862290.)  相似文献   

2.
3.
Background and objectivesSepsis is one of the major factors for both term and preterm babies with morbidity and mortality. On the basis of recent clinical trials, altered circulating micro-RNAs (miRNAs) may serve as possible biomarkers in sepsis for diagnosis and prognosis. The aim of this research is to assess the diagnostic and prognostic biomarkers of miRNA 15b and miRNA 378a for neonatal sepsis.Subjects & methodsThis study was carried out 25 neonates with sepsis admitted to neonatal ICU of Menoufia University Hospital and 25 healthy controls from February 2019 to May 2020. The relative quantification (RQ) of miRNA-15b and miRNA-378a expression was assessed using real time PCR technique. Results: Our results demonstrated that patients with sepsis had significantly higher level of MiRNA-15b than the healthy volunteers. On the other hand, patients with sepsis had significantly lower level of MiRNA-378a than the healthy volunteers. The ROC curve showed that the serum MiRNA-15b was a significant discriminator of sepsis with a combined sensitivity and specificity of 76% and 88% with cutoff point of 3.24. In addition, serum MiRNA-378a was a significant discriminator of sepsis with a combined sensitivity and specificity of 60% and 88% with cutoff point of 0.361. The miRNA-15b expression significantly correlated positive with respiratory rate (r =0.415,p =0.039), WBCs (r = 0.408, p =0.043), and CRP (r =0.407, p=0.043). Likewise, miRNA-378a expression significantly correlated negative with respiratory rate (r =-0.415p =0.024), WBCs (r =- 0.442, p =0.027), and CRP (r =- 0.459, p=0.021).ConclusionBoth MiRNA 15b and 378a are promising biomarker for neonatal sepsis.  相似文献   

4.
5.
ObjectiveLow levels of selenium (Se) and glutathione peroxidase (GSHPx), a key selenoenzyme, were documented in systemic inflammatory response syndrome (SIRS) and sepsis, both associated with high mortality. Se supplementation had mixed effects on outcome. We hypothesized that Se supplementation could have a different impact on biomarkers and 28-day mortality in patients with SIRS vs. sepsis.MethodsAdult patients with SIRS or sepsis were randomized to either high-dose (Se+, n = 75) or standard-dose (Se−, n = 75) Se supplementation. Plasma Se, whole blood GSHPx activity, C-reactive protein (CRP), procalcitonin (PCT), prealbumin, albumin and cholesterol levels were measured serially up to day 14.ResultsThere was no difference in mortality between Se− (24/75) vs. Se+ group (19/75; p = 0.367) or between SIRS and septic patients (8/26 vs. 35/124; p = 0.794). There was a trend to reduced mortality in SIRS patients in the Se+ vs. Se− group (p = 0.084). Plasma Se levels increased in the Se+ group only in patients with sepsis but not in patients with SIRS. Plasma Se levels correlated with GSHPx. In SIRS/Se+ group, Se correlated only with GSHPx. In SIRS/Se− group, Se correlated with cholesterol but not with other biomarkers. In sepsis patients, Se levels correlated with cholesterol, GSHPx and prealbumin. Cholesterol levels were higher in survivors in the Se− group.ConclusionsSe levels correlated with GSHPx activity and other nutritional biomarkers with significant differences between SIRS and sepsis groups. High-dose Se supplementation did not affect mortality but a strong trend to decreased mortality in SIRS patients warrants further studies in this population.  相似文献   

6.
7.
目的:检测脓毒症患儿血清内生吗啡(EM)动态变化,探讨脓毒症患儿血清EM水平的临床意义。方法:选择2017年6月-2018年2月华中科技大学同济医学院附属同济医院收治的30例伴有严重脓毒症或脓毒症休克的患儿作为脓毒症组,30例全身炎症反应综合征(SIRS)患儿作为SIRS组,30例健康儿童作为对照组。脓毒症组、SIRS组及对照组分别于入组后第1、3、6、9天抽取外周静脉血,采用免疫荧光法检测血清降钙素原(PCT)水平,采用酶联免疫吸附试验(ELISA)测定血清EM水平,采用流式细胞术(FCM)检测细胞免疫功能。结果:SIRS组、脓毒症组患儿的第1、3、6天血清PCT水平显著高于对照组,且随时间延长PCT水平逐渐降低,至第9天降至正常水平(P0.05),而脓毒症组与SIRS组间血清PCT水平无统计学差异(P0.05)。脓毒症组第1、3、6天血清EM水平均高于SIRS组(P0.05),第9天两组血清EM水平比较差异无统计学意义(P0.05)。脓毒症组EM水平随时间延长而降低,至第9天降至SIRS组的水平(P0.05)。与SIRS组相比,第1天脓毒症组的CD3~+T细胞数量增多(P0.05),两组CD4~+、CD8~+T细胞数量、CD4~+/CD8~+比例比较无统计学差异(P0.05)。结论:脓毒症患儿中血清EM水平较高,有可能作为诊断脓毒症特异性较高的生物标志物。  相似文献   

8.
Sepsis is the leading cause of death in critically ill patients. While myocardial dysfunction has been recognized as a major manifestation in severe sepsis, the underlying molecular mechanisms associated with septic cardiomyopathy remain unclear. In this study, we performed a miRNA array analysis in hearts collected from a severe septic mouse model induced by cecal ligation and puncture (CLP). Among the 19 miRNAs that were dys-regulated in CLP-mouse hearts, miR-223(3p) and miR-223*(5p) were most significantly downregulated, compared with sham-operated mouse hearts. To test whether a drop of miR-223 duplex plays any roles in sepsis-induced cardiac dysfunction and inflammation, a knockout (KO) mouse model with a deletion of the miR-223 gene locus and wild-type (WT) mice were subjected to CLP or sham surgery. We observed that sepsis-induced cardiac dysfunction, inflammatory response and mortality were remarkably aggravated in CLP-treated KO mice, compared with control WTs. Using Western-blotting and luciferase reporter assays, we identified Sema3A, an activator of cytokine storm and a neural chemorepellent for sympathetic axons, as an authentic target of miR-223* in the myocardium. In addition, we validated that miR-223 negatively regulated the expression of STAT-3 and IL-6 in mouse hearts. Furthermore, injection of Sema3A protein into WT mice revealed an exacerbation of sepsis-triggered inflammatory response and myocardial depression, compared with control IgG1 protein-treated WT mice following CLP surgery. Taken together, these data indicate that loss of miR-223/-223* causes an aggravation of sepsis-induced inflammation, myocardial dysfunction and mortality. Our study uncovers a previously unrecognized mechanism underlying septic cardiomyopathy and thereby, may provide a new strategy to treat sepsis.  相似文献   

9.
Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High‐throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood‐compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next‐generation sequencing and RT‐qPCR (n = 3 × 22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment‐specific signalling functions of differentially regulated miRNAs in sepsis‐relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down‐ and up‐regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment‐specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR‐199b‐5p was identified as a potential early indicator for sepsis and septic shock. miR‐125b‐5p and miR‐26b‐5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR‐27b‐3p) was present in all three compartments. The expression of sepsis‐associated miRNAs is compartment‐specific. Exosome‐derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers.  相似文献   

10.
Objective: To compare plasma levels of F-actin, G-actin and thymosin beta 4 (TB4) in humans with septic shock, noninfectious systemic inflammatory response syndrome (SIRS) and healthy controls.

Results: F-actin was significantly elevated in septic shock as compared with noninfectious SIRS and healthy controls. G-actin levels were greatest in the noninfectious SIRS group but significantly elevated in septic shock as compared with healthy controls. TB4 was not detectable in the septic shock or noninfectious SIRS group above the assay’s lowest detection range (78?ng/ml).

Conclusions: F-actin is significantly elevated in patients with septic shock as compared with noninfectious SIRS. F-actin and the F:G-actin ratio are potential biomarkers for the diagnosis of septic shock.  相似文献   

11.

Background

Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers in cardiovascular disease and in particular, coronary artery disease (CAD). Few studies were undertaken to perform analyses with regard to risk stratification of future cardiovascular events. miR-126, miR-197 and miR-223 are involved in endovascular inflammation and platelet activation and have been described as biomarkers in the diagnosis of CAD. They were identified in a prospective study in relation to future myocardial infarction.

Objectives

The aim of our study was to further evaluate the prognostic value of these miRNAs in a large prospective cohort of patients with documented CAD.

Methods

Levels of miR-126, miR-197 and miR-223 were evaluated in serum samples of 873 CAD patients with respect to the endpoint cardiovascular death. miRNA quantification was performed using real time polymerase chain reaction (RT-qPCR).

Results

The median follow-up period was 4 years (IQR 2.78–5.04). The median age of all patients was 64 years (IQR 57–69) with 80.2% males. 38.9% of the patients presented with acute coronary syndrome (ACS), 61.1% were diagnosed with stable angina pectoris (SAP). Elevated levels of miRNA-197 and miRNA-223 reliably predicted future cardiovascular death in the overall group (miRNA-197: hazard ratio (HR) 1.77 per one standard deviation (SD) increase (95% confidence interval (CI) 1.20; 2.60), p = 0.004, C-index 0.78; miRNA-223: HR 2.23 per one SD increase (1.20; 4.14), p = 0.011, C-index 0.80). In ACS patients the prognostic power of both miRNAs was even higher (miRNA-197: HR 2.24 per one SD increase (1.25; 4.01), p = 0.006, C-index 0.89); miRA-223: HR 4.94 per one SD increase (1.42; 17.20), p = 0.012, C-index 0.89).

Conclusion

Serum-derived circulating miRNA-197 and miRNA-223 were identified as predictors for cardiovascular death in a large patient cohort with CAD. These results reinforce the assumption that circulating miRNAs are promising biomarkers with prognostic value with respect to future cardiovascular events.  相似文献   

12.

Rationale

Natural killer cells, as a major source of interferon-γ, contribute to the amplification of the inflammatory response as well as to mortality during severe sepsis in animal models.

Objective

We studied the phenotype and functions of circulating NK cells in critically-ill septic patients.

Methods

Blood samples were taken <48 hours after admission from 42 ICU patients with severe sepsis (n = 15) or septic shock (n = 14) (Sepsis group), non-septic SIRS (n = 13) (SIRS group), as well as 21 healthy controls. The immuno-phenotype and functions of NK cells were studied by flow cytometry.

Results

The absolute number of peripheral blood CD3–CD56+ NK cells was similarly reduced in all groups of ICU patients, but with a normal percentage of NK cells. When NK cell cytotoxicity was evaluated with degranulation assays (CD107 expression), no difference was observed between Sepsis patients and healthy controls. Under antibody-dependent cell cytotoxicity (ADCC) conditions, SIRS patients exhibited increased CD107 surface expression on NK cells (62.9[61.3–70]%) compared to healthy controls (43.5[32.1–53.1]%) or Sepsis patients (49.2[37.3–62.9]%) (p = 0.002). Compared to healthy (10.2[6.3–13.1]%), reduced interferon-γ production by NK cells (K562 stimulation) was observed in Sepsis group (6.2[2.2–9.9]%, p<0.01), and especially in patients with septic shock. Conversely, SIRS patients exhibited increased interferon-γ production (42.9[30.1–54.7]%) compared to Sepsis patients (18.4[11.7–35.7]%, p<0.01) or healthy controls (26.8[19.3–44.9]%, p = 0.09) in ADCC condition.

Conclusions

Extensive monitoring of the NK-cell phenotype and function in critically-ill septic patients revealed early decreased NK-cell function with impaired interferon-γ production. These results may aid future NK-based immuno-interventions.

Trial Registration

NTC00699868.  相似文献   

13.
IntroductionSystemic sepsis releases several cytokines among which tumor necrosis factor alfa (TNFα) has emerged as key cytokine causing septic shock. Single Nucleotide Polymorphisms (SNPs) at positions ?238, ?308, ?376 and +489 in the promoter region of TNF gene exhibit differential association to inflammation and increased TNF production in sepsis.Materials and MethodsThis research work was carried out in 278 critically ill patients and 115 controls. The patients were divided into four groups: Healthy controls, SIRS, Sepsis and Septic shock. Plasma cytokine level was evaluated by ELISA. Specific sequences of TNF gene (?238, ?308, ?376, +489) were amplified using polychromase chain reaction (PCR). SNP detected by BamHiI, NcoI, FokI, TaiI restriction enzymes.ResultsMean plasma TNFα level in healthy Control group was 8.37 ± 2.23 pg/ml, in SIRS group, the mean plasma TNFα level was 77.99 ± 5.51 pg/ml, in Sepsis patients 187.1 ± 14.33 pg/ml and in septic shock 202.2 ± 14.85 pg/ml; range 56.17–417.1 pg/ml. SNP was studied among different patient groups, which showed a higher frequency of mutants among sepsis and shock patients as compared to control.ConclusionPlasma TNF alpha level was significantly high in patients with sepsis and septic shock. SNP of TNF gene showed significant association between polymorphism and development of severe sepsis and septic shock, this would help us in evaluating patients at high risk for septic shock and such patients needed to obtain a rational basis for therapy.  相似文献   

14.
Current sepsis biomarkers may be helpful in determining organ failure and evaluating patient clinical course; however, direct molecular biomarkers to predict subsequent organ failure have not yet been discovered. Exosomes, a small population of extracellular vesicles, play an important role in the inflammatory response, coagulation process and cardiac dysfunction in sepsis. Nonetheless, the association of plasma exosome with severity and mortality of sepsis is not well known. Therefore, the overall levels of plasma exosome in sepsis patients were assessed and whether exosome levels were associated with organ failure and mortality was evaluated in the present study. Plasma level of exosomes was measured by ELISA. Among 220 patients with sepsis, 145 (66%) patients were diagnosed with septic shock. A trend of increased exosome levels in control, sepsis and septic shock groups was observed (204 µg/mL vs 525 µg/mL vs 802 µg/mL, P < 0.001). A positive linear relationship was observed between overall exosome levels and Sequential Organ Failure Assessment (SOFA) score in the study cohorts (r value = 0.47). When patients were divided into two groups according to best cut‐off level, a statistical difference in 28‐ and 90‐day mortality between patients with high and low plasma exosomes was observed. Elevated levels of plasma exosomes were associated with severity of organ failure and predictive of mortality in critically ill patients with sepsis.  相似文献   

15.
BackgroundSeveral reports suggest that implementation of the Surviving Sepsis Campaign (SSC) guidelines is associated with mortality reduction in sepsis. However, adherence to the guideline-based resuscitation and management sepsis bundles is still poor.ObjectiveTo perform a systematic review of studies evaluating the impact of performance improvement programs on compliance with Surviving Sepsis Campaign (SSC) guideline-based bundles and/or mortality.ResultsFifty observational studies were selected. Despite high inconsistency across studies, performance improvement programs were associated with increased compliance with the complete 6-hour bundle (OR = 4.12 [95% confidence interval 2.95-5.76], I2 = 87.72%, k = 25, N = 50,081) and the complete 24-hour bundle (OR = 2.57 [1.74-3.77], I2 = 85.22%, k = 11, N = 45,846) and with a reduction in mortality (OR = 0.66 [0.61-0.72], I2 = 87.93%, k = 48, N = 434,447). Funnel plots showed asymmetry.ConclusionsPerformance improvement programs are associated with increased adherence to resuscitation and management sepsis bundles and with reduced mortality in patients with sepsis, severe sepsis or septic shock.  相似文献   

16.
Abstract

Objective: We previously demonstrated that plasma levels of F-actin and Thymosin Beta 4 differs among patients with septic shock, non-infectious systemic inflammatory syndrome and healthy controls and may serve as biomarkers for the diagnosis of sepsis. The current study aims to determine if these proteins are associated with or predictive of illness severity in patients at risk for sepsis in the Emergency Department (ED).

Methods: Prospective, biomarker study enrolling patients (>18?years) who met the Shock Precautions on Triage Sepsis rule placing them at-risk for sepsis.

Results: In this study of 203 ED patients, F-actin plasma levels had a linear trend of increase when the quick Sequential Organ Failure Assessment (qSOFA) score increased. F-actin was also increased in patients who were admitted to the Intensive Care Unit (ICU) from the ED, and in those with positive urine cultures. Thymosin Beta 4 was not associated with or predictive of any significant outcome measures.

Conclusion: Increased levels of plasma F-actin measured in the ED were associated with incremental illness severity as measured by the qSOFA score and need for ICU admission. F-actin may have utility in risk stratification of undifferentiated patients in the ED presenting with signs and symptoms of sepsis.  相似文献   

17.
Alzheimer’s disease (AD) and age-related macular degeneration (AMD) are complex and progressive inflammatory degenerations of the human neocortex and retina. Recent molecular, genetic and epigenetic evidence indicate that at least 4 micro RNAs (miRNAs) - including the NF-кB-regulated miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 - are progressively up-regulated in both AD and AMD. This quartet of up-regulated miRNAs in turn down-regulate a small brain- and retinal-cell-relevant family of target mRNAs, including that encoding complement factor H (CFH), a major negative regulator of the innate immune and inflammatory response. Together miRNA-146a and miRNA-155 recognize an overlapping miRNA regulatory control (MiRC) region in the CFH 3’-untranslated region (3’- UTR; 5’-TTTAGTATTAA-3’) to which either of these miRNAs may interact. Progressive, pathogenic increases in specific miRNA binding to the entire 232 nucleotide CFH 3’-UTR appears to be a major regulator of CFH expression down-regulation, and the inflammatory pathology that characterizes both AMD and AD. The data presented in this report provides evidence that up-regulation of brain- and retinal- abundant miRNAs, including miRNA-9, miRNA-125b, miRNA-146a and miRNA-155, are common to the pathogenetic mechanism of CFH deficiency that drives inflammatory neurodegeneration, and for the first time indicates multiple, independent miRNA-mediated regulation of the CFH mRNA 3’-UTR.  相似文献   

18.
AimsSepsis is a major cause of morbidity and mortality in the elderly population. In prior studies, we have shown that in vivo, the inflammatory response in aged animals is exaggerated as compared to young animals and that this response likely accounts for the increased morbidity and mortality. Part of this uncontrolled inflammatory response in sepsis is due to the innate immune response. However, recent studies have shown that the pathogenesis of sepsis is much more complex. The adrenergic autonomic nervous system is now thought to play a key role in modulating the inflammatory response in sepsis. In this study, we hypothesize that not only is the innate immune response enhanced in response to lipopolysaccharide (LPS) in aged animals, but that the adrenergic nervous system also plays a role in the release of excess inflammatory cytokines.Main methodsMale Fischer-344 rats (young: 3 months; aged: 24 months) were used. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS, 15 mg/kg BW). Splenic tissues were harvested and mRNA and protein were extracted. The protein expression of CD14 and TLR4, key mediators of LPS in the innate response, as well as alpha-2A adrenergic receptor (α2A-AR) and phosphodiesterase 4D (PDE4D), as the means by which the autonomic nervous system exerts its effects were analyzed.Key findingsSplenic tissue concentrations of α2A-AR, PDE4D, CD14, and TLR4 were significantly increased in septic aged rats as compared to aged sham rats and septic young rats. The increased expression of α2A-AR in septic aged rats was further confirmed by immunohistochemical staining of splenic tissues.SignificanceThese data support the hypothesis that not only is the innate immune response increased in aged animals during sepsis, but that there is also an upregulated response of the adrenergic autonomic nervous system that contributes to excess proinflammatory cytokine release.  相似文献   

19.
《Biomarkers》2013,18(4):338-342
Abstract

Intestinal ischemia and reperfusion is a common pathway for many diseases in children. The objective of our study was an analysis of Trefoil factor 1 levels dynamics in patients with SIRS or septic condition during a 5-day period. Analysis of TFF1 levels dynamics revealed that TFF1 levels kept steady state during the 5-day period. TFF1 levels were similar in patients with SIRS, sepsis and severe sepsis. Significantly higher levels of TFF1 were in patients with septic shock and MODS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号