首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age‐related accumulation of senescent cells promotes aging at least partially due to the senescence‐associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA‐damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs.  相似文献   

2.
Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre‐LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi‐faceted biological response including cell migration.  相似文献   

3.
Extracellular vesicles (EVs) have emerged as important regulators of inter‐cellular and inter‐organ communication, in part via the transfer of their cargo to recipient cells. Although circulating EVs have been previously studied as biomarkers of aging, how circulating EVs change with age and the underlying mechanisms that contribute to these changes are poorly understood. Here, we demonstrate that aging has a profound effect on the circulating EV pool, as evidenced by changes in concentration, size, and cargo. Aging also alters particle function; treatment of cells with EV fractions isolated from old plasma reduces macrophage responses to lipopolysaccharide, increases phagocytosis, and reduces endothelial cell responses to vascular endothelial growth factor compared to cells treated with young EV fractions. Depletion studies indicate that CD63+ particles mediate these effects. Treatment of macrophages with EV‐like particles revealed that old particles increased the expression of EV miRNAs in recipient cells. Transfection of cells with microRNA mimics recapitulated some of the effects seen with old EV‐like particles. Investigation into the underlying mechanisms using bone marrow transplant studies revealed circulating cell age does not substantially affect the expression of aging‐associated circulating EV miRNAs in old mice. Instead, we show that cellular senescence contributes to changes in particle cargo and function. Notably, senolytic treatment of old mice shifted plasma particle cargo and function toward that of a younger phenotype. Collectively, these results demonstrate that senescent cells contribute to changes in plasma EVs with age and suggest a new mechanism by which senescent cells can affect cellular functions throughout the body.  相似文献   

4.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

5.
Extracellular vesicles (EVs) are thought to mediate the transport of proteins and RNAs involved in intercellular communication. Here, we show dynamic changes in the buoyant density and abundance of EVs that are secreted by PC12 cells stimulated with nerve growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation, and mouse embryonic stem cells (mESCs) differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote neural induction of mESCs. Cyclin D1 enriched within the EVs derived from differentiated neuronal cells contributes to this induction. EVs purified from cells overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin D1 from the EVs reduced the neural induction effect. Our results suggest that EVs regulate neural development through sorting of cyclin D1.  相似文献   

6.
Amplification of the proto-oncogene MYCN is a key molecular aberration in high-risk neuroblastoma and predictive of poor outcome in this childhood malignancy. We investigated the role of MYCN in regulating the protein cargo of extracellular vesicles (EVs) secreted by tumour cells that can be internalized by recipient cells with functional consequences. Using a switchable MYCN system coupled to mass spectrometry analysis, we found that MYCN regulates distinct sets of proteins in the EVs secreted by neuroblastoma cells. EVs produced by MYCN-expressing cells or isolated from neuroblastoma patients induced the Warburg effect, proliferation and c-MYC expression in target cells. Mechanistically, we linked the cancer-promoting activity of EVs to the glycolytic kinase pyruvate kinase M2 (PKM2) that was enriched in EVs secreted by MYC-expressing neuroblastoma cells. Importantly, the glycolytic enzymes PKM2 and hexokinase II were detected in the EVs circulating in the bloodstream of neuroblastoma patients, but not in those of non-cancer children. We conclude that MYC-activated cancers might spread oncogenic signals to remote body locations through EVs.  相似文献   

7.
8.
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.  相似文献   

9.
10.
胞外囊泡(EVs)是细胞旁分泌产生的一种亚细胞成分,实质上是一组纳米级颗粒。它是双层膜结合型囊泡,内含蛋白质、核酸等活性成分。EVs在细胞间通过转移携带的信号分子而获得重要的地位。目前关于EVs在体外和体内的研究中对T细胞的调控能力引起了人们广泛的兴趣。在大多数研究中干细胞被报道能够抑制T细胞的增殖、活化和分化,在极少数研究中也发现干细胞具有增强T细胞免疫反应的作用。事实上所有的细胞类型均能释放EVs,包括干/祖/前体细胞。EVs被认为是细胞间交流的一种新机制,具有与干/祖细胞等亲代细胞相似的免疫调控作用。本综述是概述干/祖细胞来源的EVs对T细胞调控作用及可能的机制。  相似文献   

11.
Cellular senescence is the permanent arrest of cell cycle, physiologically related to aging and aging-associated diseases. Senescence is also recognized as a mechanism for limiting the regenerative potential of stem cells and to protect cells from cancer development. The senescence program is realized through autocrine/paracrine pathways based on the activation of a peculiar senescence-associated secretory phenotype (SASP). We show here that conditioned media (CM) of senescent mesenchymal stem cells (MSCs) contain a set of secreted factors that are able to induce a full senescence response in young cells. To delineate a hallmark of stem cells SASP, we have characterized the factors secreted by senescent MSC identifying insulin-like growth factor binding proteins 4 and 7 (IGFBP4 and IGFBP7) as key components needed for triggering senescence in young MSC. The pro-senescent effects of IGFBP4 and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from senescent-CM. The blocking of IGFBP4/7 also reduces apoptosis and promotes cell growth, suggesting that they may have a pleiotropic effect on MSC biology. Furthermore, the simultaneous addition of rIGFBP4/7 increased senescence and induced apoptosis in young MSC. Collectively, these results suggest the occurrence of novel-secreted factors regulating MSC cellular senescence of potential importance for regenerative medicine and cancer therapy.  相似文献   

12.
Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence‐Associated β‐Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9‐ and CD81‐positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.  相似文献   

13.
精浆胞外囊泡是一种存在于精浆的膜性囊泡,按分泌器官分为附睾小体和前列腺小体。囊泡可与精子细胞膜发生融合,通过传递内容物或介导信号通路进而调节精子功能。它含有多种活性物质,其中蛋白质组分可影响精子活力以及顶体反应,并有清除损伤精子和促进细胞粘附的作用;脂质组分具有调节靶细胞质膜稳定性的作用;核酸组分主要参与免疫反应、跨代遗传及男性不育;离子则是多种酶的辅助因子,在调节酶活性和精浆微环境中发挥重要作用。不同组分对精子功能的影响不尽相同,本文将对此方面的研究进展进行详尽的综述,以期为该领域相关研究人员提供一定的参考。  相似文献   

14.
细胞外囊泡(Extracellular vesicles,EVs)是指细胞分泌的双层膜转运囊泡。EVs能从细胞中摄取大分子物质,并将其转移至受体细胞。在这些大分子物质中,研究最多的就是microRNA (miRNA)。miRNA是一种参与基因表达调控的非编码RNA,已证实在哺乳动物卵泡液EVs中有不同的非编码RNA存在,EVs携带miRNA可以作为自分泌和旁分泌的替代机制,影响卵泡发育。文中系统介绍了EVs的种类、特征和分离鉴定方法,重点综述了EVs及携带的miRNA对卵泡发育的作用,包括早期卵泡发育、卵母细胞成熟、卵泡优势化以及对颗粒细胞功能的影响。同时对卵泡液中EVs及其携带的miRNA的未来研究进行了展望,为卵泡液中EVs及携带的miRNA功能的研究及应用提供了思路和方向。  相似文献   

15.
Acute liver injury (ALI) induced by chemicals or viruses can progress rapidly to acute liver failure (ALF), often resulting in death of patients without liver transplantation. Since liver transplantation is limited due to a paucity of donors, expensive surgical costs, and severe immune rejection, novel therapies are required to treat liver injury. Extracellular vesicles (EVs) are used for cellular communication, carrying RNAs, proteins, and lipids and delivering them intercellularly after being endocytosed by target cells. Recently, it was reported that EVs secreted from human hepatocytes have an ability to modulate the immune responses; however, these roles of EVs secreted from human hepatocytes were studied only with in vitro experiments. In the present study, we evidenced that EVs secreted from human hepatocytes attenuated the CCL4-induced ALI by inhibiting the recruitment of monocytes through downregulation of chemokine receptor in the bone marrow and recruitment of neutrophils through the reduction of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2 expression levels in the liver.Subject terms: Acute inflammation, Liver diseases  相似文献   

16.
Extracellular vesicles (EVs) are released by cells into the extracellular milieu to facilitate intercellular communication in both physiological and pathological condition. EVs contain selective repertoires of proteins, RNAs, lipids and metabolites that moderate signalling pathways in the recipient cells. The enrichment of a particular set of proteins or RNAs within the EVs highlights the existence of specific sorting mechanisms that orchestrate the selective packaging of the cargo. The molecular machinery of cargo sorting has remained obscure over the years and functional studies are required to understand this complex mechanism. In this article, we offer a brief overview of the molecular mechanisms that are known to regulate sorting of various molecules into EVs. We also discuss how different pathways of biogenesis alter the exosomal cargo as well and the implications of the cellular state on the content of the EVs. Understanding the sorting of exosomal cargo could further be exploited in clinical settings for targeted drug delivery and to block disease progression.  相似文献   

17.
Cellular communication can be mediated by the exchange of biological information, mainly in the form of proteins and RNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are internalized by an acceptor cell. Exosomes bear specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Knowledge about loadings and processes and mechanisms of cargo sorting of exosomes is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. In this review, we will discuss the molecular mechanisms associated with exosome secretion and their specific cargo sorting, with special attention to the sorting of RNAs and proteins, and thus the outcome and the emerging therapeutic opportunities of the communication between the exosome-producer and recipient cells.  相似文献   

18.
外泌体(exosomes)是细胞分泌的纳米级别膜性小泡,在20世纪80年代初就已经被发现,但其在细胞间所起到的信息交流作用,直至最近才开始为人们所认知.应用大规模分析技术使得exosomes中的复杂成分不断被确定,因为其中的脂质、蛋白质和RNA成分在脂质膜的保护下具有充分的生物学活性,可有效发挥对受体细胞的调节作用,引起科学界的极大兴趣,逐渐成为研究热点之一.我们综述了近几年关于exosomes的研究成果,总结了其参与细胞间信息交流的三种主要方式,包括膜表面信号分子的直接作用、膜融合时内容物的胞内调节以及生物活性成分的释放调节.Exosomes的发现使得细胞间的信息交流更加精细和全面,尤其重要的是,它的发现揭示了存在于机体自身的RNA胞间转移途径.我们还进一步综述了exosomes的三种作用方式在神经系统及肿瘤发生发展中的作用,探讨了exosomes在疾病监测、自身免疫性疾病与缺血性疾病治疗中的临床应用价值.在基因治疗领域,由于具有安全有效的靶向运输能力,exosomes将有望成为理想的基因治疗载体.  相似文献   

19.
It has been reported that p21, p53, and p16 affect the cell cycle and cell senescence. However, their roles in keratinocyte senescence are not clear. We established primary keratinocyte strains from 15 donors and maintained them until replicative senescence; their population doublings ranged from 5.7-45.2. These strains were classified based on their population doublings as short (5.7-10.4), intermediate (13.9-17.4), and long (21.5-45.2). To investigate the roles of p21, p53, and p16 in the cellular senescence of the cultured keratinocytes, we quantitatively analyzed p21, p53, and p16 levels of keratinocyte strains with different life spans by Western blot with Fluorol mager. p21 levels increased in the senescent phase but not in the nonsenescent phase in all of the short, intermediate, and long life-span strains. Northern blot analysis also revealed induction of p21 mRNA was similar to that of p21 protein levels. There were no apparent differences in p53 levels between senescent and nonsenescent cells. The short life-span strains exhibited a significant increase in p16 levels in the senescent phase (eighth or tenth passage). However, in two long life-span strains, p16 levels were increased in the nonsenescent phase (eighth passage) but then declined as the cells reached senescence (twenty-seventh passage). Therefore, induction of p16 appeared not to be associated with senescence in long life-span strains. In conclusion, p21 but not p16 or p53 may play roles in keratinocyte senescence.  相似文献   

20.
Cellular senescence is a cell surveillance mechanism that arrests the cell cycle in damaged cells. The senescent phenotype can spread from cell to cell through paracrine and juxtacrine signalling, but the dynamics of this process are not well understood. Although senescent cells are important in ageing, wound healing and cancer, it is unclear how the spread of senescence is contained in senescent lesions. In the absence of the immune system, senescence could theoretically spread infinitely from one cell to another, but this contradicts experimental evidence. To investigate this issue, we developed both a minimal mathematical model and a stochastic simulation of senescence spread. Our results suggest that differences in the number of signalling molecules secreted between subtypes of senescent cells can limit the spread of senescence. We found that dynamic, time-dependent paracrine signalling prevents the uncontrolled spread of senescence, and we demonstrate how model parameters can be determined using Bayesian inference in a proposed experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号