首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(6):1347-1354
S1PR1 plays a crucial role in promoting proliferation of hepatocellular carcinoma (HCC). Over expression of S1PR1 is observed in HCC cell lines. The mechanisms underlying the aberrant expression of S1PR1 are not known well. MircroRNAs are important regulators of gene expression and disproportionate microRNAs can result in dysregulation of oncogenes in cancer cells. In this study, we found that miR-363, a potential tumor suppressor microRNA, downregulated the expression of S1PR1 and inhibited the proliferation of HCC cells. Bioinformatic analysis predicted a putative binding site of miR-363 within the 3′-UTR of S1PR1 mRNA. Luciferase reporter assay showed that miR-363 directly targeted the 3′-UTR of S1PR1 mRNA. Transfection of miR-363 mimics suppressed S1PR1 expression in HCC cells, followed by the repression of the activation of ERK and STAT3. Moreover, we found that the expression of downstream genes of ERK and STAT3, including PDGF-A, PDGF-B, MCL-1 and Bcl-xL, was suppressed after miR-363 transfection. Taken together, the present study demonstrated that miR-363 was a negative regulator of S1PR1 expression in HCC cells and inhibited cell proliferation, suggesting that the miR-363/S1PR1 pathway might be a novel target for the treatment of HCC.  相似文献   

2.
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.Subject terms: Cancer microenvironment, Oncogenes, Translational research  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.Subject terms: Liver cancer, Oncogenes  相似文献   

4.
Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA.  相似文献   

5.
Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by μCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3−/− mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.  相似文献   

6.
Platelet Derived Growth Factor (PDGF) and sphingosine-1-phosphate (S1P) pathways play a key role in mural cell recruitment during tumor growth and angiogenesis. Fingolimod, a S1P analogue, has been shown to exert antitumor and antiangiogenic properties. However, molecular targets and modes of action of fingolimod remain unclear. In this study, we confirmed the antagonizing action of S1P and PDGF-B on rat vascular smooth muscle cell (VSMCs) growth and migration. We then compared siRNA and/or fingolimod (100 nM) treatments on PDGFR-β, S1PR1 S1PR2 and S1PR3 expression. Fingolimod induced a 50% reduction in S1PR3 protein expression which was cumulative with that obtained with anti-S1PR3 siRNA. We found that siRNA-induced inhibition of both PDGFR-β and S1PR3 was the most effective means to block VSMC migration induced by PDGF-B. Finally, we observed that fingolimod treatment associated with anti-S1PR1 siRNA principally inhibited VSMC growth while in combination with anti-S1PR3 siRNA it strongly inhibited VSMC migration. These results suggest that for rat VSMCs, the PDGFR-S1PR1 pathway is predominantly dedicated to cell growth while PDGFR-S1PR3 stimulates cell migration. As an S1P analogue, fingolimod is considered a potent activator of S1PR1 and S1PR3. However, its action on the PDGFR-S1PR platform appears to be dependent on S1PR1 and S1PR3 specific downregulation. Considering that the S1P pathway has already been shown to exert various crosstalks with tyrosine kinase pathways, it seems of great interest to evaluate fingolimod potential in combination with the numerous tyrosine kinase inhibitors used in oncology.  相似文献   

7.
Ceramide is an important lipid signaling molecule and a key intermediate in sphingolipid biosynthesis. Recent studies have implied a previously unappreciated role for the ceramide N-acyl chain length, inasmuch as ceramides containing specific fatty acids appear to play defined roles in cell physiology. The discovery of a family of mammalian ceramide synthases (CerS), each of which utilizes a restricted subset of acyl-CoAs for ceramide synthesis, strengthens this notion. We now report the characterization of mammalian CerS2. qPCR analysis reveals that CerS2 mRNA is found at the highest level of all CerS and has the broadest tissue distribution. CerS2 has a remarkable acyl-CoA specificity, showing no activity using C16:0-CoA and very low activity using C18:0, rather utilizing longer acyl-chain CoAs (C20-C26) for ceramide synthesis. There is a good correlation between CerS2 mRNA levels and levels of ceramide and sphingomyelin containing long acyl chains, at least in tissues where CerS2 mRNA is expressed at high levels. Interestingly, the activity of CerS2 can be regulated by another bioactive sphingolipid, sphingosine 1-phosphate (S1P), via interaction of S1P with two residues that are part of an S1P receptor-like motif found only in CerS2. These findings provide insight into the biochemical basis for the ceramide N-acyl chain composition of cells, and also reveal a novel and potentially important interplay between two bioactive sphingolipids that could be relevant to the regulation of sphingolipid metabolism and the opposing functions that these lipids play in signaling pathways.  相似文献   

8.
The Ca2+ sensor S100A1 is essential for proper endothelial cell (EC) nitric oxide (NO) synthase (eNOS) activation. S100A1 levels are greatly reduced in primary human microvascular ECs subjected to hypoxia, rendering them dysfunctional. However mechanisms that regulate S100A1 levels in ECs are unknown. Here we show that ECs transfected with a S100A1–3′ untranslated region (UTR) luciferase reporter construct display significantly reduced gene expression when subjected to low oxygen levels or chemical hypoxia. Bioinformatic analysis suggested that microRNA -138 (MiR-138) could target the 3′UTR of S100A1. Patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased MiR-138 levels and decreased S100A1 protein expression. Consistent with this finding, hypoxia greatly increased MiR-138 levels in ECs, but not in skeletal muscle C2C12 myoblasts or differentiated myotubes or primary human vascular smooth muscle cells. Transfection of a MiR-138 mimic into ECs reduced S100A1–3 ‘UTR reporter gene expression, while transfection of an anti MiR-138 prevented the hypoxia-induced downregulation of the reporter gene. Deletion of the 22 nucleotide putative MiR-138 target site abolished the hypoxia-induced loss of reporter gene expression. Knockdown of Hif1-α mediated by siRNA prevented loss of hypoxia-induced reporter gene expression. Conversely, specific activation of Hif1-α by a selective prolyl-hydroxylase inhibitor (IOX2) reduced reporter gene expression even in the absence of hypoxia. Finally, primary ECs transfected with a MiR-138 mimic displayed reduced tube formation when plated onto Matrigel matrix and expressed less NO when stimulated with VEGF. These effects were reversed by gene transfer of S100A1 using recombinant adenovirus. We conclude that hypoxia-induced MiR-138 is an essential mediator of EC dysfunction via its ability to target the 3′UTR of S100A1.  相似文献   

9.
Matrix stiffness as a novel regulation factor involves in modulating the pathogenesis of hepatocellular carcinoma (HCC) invasion or metastasis. However, the mechanism by which matrix stiffness modulates HCC angiogenesis remains unknown. Here, using buffalo rat HCC models with different liver matrix stiffness backgrounds and an in vitro cell culture system of mechanically tunable Collagen1 (COL1)-coated polyacrylamide gel, we investigated the effects of different matrix stiffness levels on vascular endothelial growth factor (VEGF) expression in HCC cells and explored its regulatory mechanism for controlling HCC angiogenesis. Tissue microarray analysis showed that the expression levels of VEGF and CD31 were gradually upregulated in tumor tissues with increasing COL1 and lysyl oxidase (LOX) expression, indicating a positive correlation between tumor angiogenesis and matrix rigidity. The expression of VEGF and the phosphorylation levels of PI3K and Akt were all upregulated in HCC cells on high-stiffness gel than on low-stiffness gel. Meanwhile, alteration of intergrin β1 expression was found to be the most distinctive, implying that it might mediate the response of HCC cells to matrix stiffness simulation. After integrin β1 was blocked in HCC cells using specific monoclonal antibody, the expression of VEGF and the phosphorylation levels of PI3K and Akt at different culture times were accordingly suppressed and downregulated in the treatment group as compared with those in the control group. All data suggested that the extracellular matrix stiffness stimulation signal was transduced into HCC cells via integrin β1, and this signal activated the PI3K/Akt pathway and upregulated VEGF expression. This study unveils a new paradigm in which matrix stiffness as initiators to modulate HCC angiogenesis.  相似文献   

10.
Y Sato 《Human cell》1998,11(4):207-214
  相似文献   

11.
We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis.  相似文献   

12.
Long non‐coding RNA (lncRNA) deleted in lymphocytic leukaemia 1 (DLEU1) was reported to be involved in the occurrence and development of multiple cancers. However, the exact expression, biological function and underlying mechanism of DLEU1 in hepatocellular carcinoma (HCC) remain unclear. In this study, real‐time quantitative polymerase chain reaction (qRT‐PCR) in HCC tissues and cell lines revealed that DLEU1 expression was up‐regulated, and the increased DLEU1 was closely associated with advanced tumour‐node‐metastasis stage, vascular metastasis and poor overall survival. Function experiments showed that knockdown of DLEU1 significantly inhibited HCC cell proliferation, colony formation, migration and invasion, and suppressed epithelial to mesenchymal transition (EMT) process via increasing the expression of E‐cadherin and decreasing the expression of N‐cadherin and Vimentin. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay demonstrated that DLEU1 could sponge miR‐133a. Moreover, miR‐133a inhibition significantly reversed the suppression effects of DLEU1 knockdown on HCC cells. Besides, we found that silenced DLEU1 significantly decreased insulin‐like growth factor 1 receptor (IGF‐1R) expression (a target of miR‐133a) and its downstream signal PI3K/AKT pathway in HCC cells, while miR‐133a inhibitor partially reversed this trend. Furthermore, DLEU1 knockdown impaired tumour growth in vivo by regulating miR‐133a/IGF‐1R axis. Collectively, these findings indicate that DLEU1 promoted HCC progression by sponging miR‐133a to regulate IGF‐1R expression. Deleted in lymphocytic leukaemia 1/miR‐133a/IGF‐1R axis may be a novel target for treatment of HCC.  相似文献   

13.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

14.
HCC has remained one of the challenging cancers to treat, owing to the paucity of drugs targeting the critical survival pathways. Considering the cancer cells are deficient in DNase activity, the increase of an autonomous apoptisis endonuclease should be a reasonable choice for cancer treatment. In this study, we investigated whether DNASE1L3, an endonuclease implicated in apoptosis, could inhibit the progress of HCC. We found DNASE1L3 was down-regulated in HCC tissues, whereas its high expression was positively associated with the favorable prognosis of patients with HCC. Besides, serum DNASE1L3 levels were lower in HCC patients than in healthy individuals. Functionally, we found that DNASE1L3 inhibited the proliferation of tumor cells by inducing G0/G1 cell cycle arrest and cell apoptosis in vitro. Additionally, DNASE1L3 overexpression suppressed tumor growth in vivo. Furthermore, we found that DNASE1L3 overexpression weakened glycolysis in HCC cells and tissues via inactivating the rate-limiting enzymes involved in PTPN2-HK2 and CEBPβ-p53-PFK1 pathways. Finally, we identified the HBx to inhibit DNASE1L3 expression by up-regulating the expression of ZNF384. Collectively, our findings demonstrated that DNASE1L3 could inhibit the HCC progression through inducing cell apoptosis and weakening glycolysis. We believe DNASE1L3 could be considered as a promising prognostic biomarker and therapeutic target for HCC.  相似文献   

15.
Background: Lenvatinib is in a first-line therapy for advanced hepatocellular carcinoma (HCC). However, drug resistance is one of the principal obstacles for treatment failure. The molecular mechanism of Lenvatinib resistance has not been well investigated.Materials and methods: A genome-wide CRISPR/Cas9 knockout screening system was established and bioinformatic analysis was used to identify critical genes associated with Lenvatinib resistance. Cell proliferation assays, colony formation assays and cell migration assays were performed to investigate the effect of drug resistance associated genes, particularly DUSP4, on cancer cell malignant behavior during Lenvatinib treatment. In vivo experiments were conducted by using a xenograft mouse model.Results: We identified six genes that were associated with Lenvatinib resistance in HCC, including DUSP4, CCBL1, DHDH, CNTN2, NOS3 and TNF. DUSP4 was found to be significantly decreased at the mRNA and protein levels in Lenvatinib resistant HCC cells. DUSP4 knockout enhanced HCC cell survival, cell proliferation and migration during Lenvatinib treatment in vitro and in vivo, accompanied by regulation of p-ERK and p-MEK levels. This finding implied that DUSP4 deficiency induced Lenvatinib resistance. Interestingly, DUSP4 deficiency induced Lenvatinib resistance was abrogated by the MEK inhibitor Selumetinib, implying that MEK phosphorylation and DUSP4-inhibition dependent ERK activation were required for drug resistance. Finally, we found that DUSP4 deficiency was associated with HCC prognosis and response to Lenvatinib based on clinical data.Conclusions: DUSP4 deficiency mediates Lenvatinib resistance by activating MAPK/ERK signaling and combination therapy using Lenvatinib and MEK inhibitors may be a promising therapeutic strategy for overcoming Lenvatinib resistance.  相似文献   

16.
The endothelial cell (EC) barrier disruption has been implicated in vascular leakage and pulmonary edema. Many reports have shown that the EC barrier dysfunction is regulated by the sphingosine-1-phophate (S1P)/S1P receptor-1 (S1PR1) axis. Identifying downstream effectors for the S1P/S1PR1 axis in pulmonary vasculature has been limited by mixed populations in vitro cultures that do not retain physiological EC phenotype and complex of tedious proteomics. In this study, we used a combination of in vivo biotinylation and liquid chromatograph tandem mass spectrometry on three mouse models of S1pr1 expression, namely normal, knockout (KO) and high, to identify EC membrane proteins whose cell-surface expression is S1pr1-dependent. EC-specific KO of S1pr1 caused severe pulmonary vascular disruption and reduction of many membrane proteins on ECs. Using the MaxQuant software we were able to identify novel membrane targets of S1pr1, for instance, Cd105 and Plvap, by comparison with their membrane expressions among the three EC model systems. Moreover, regulation of Cd105 and Plvap by S1pr1 were validated with Western blot and immunostaining in vivo and in vitro. Our data suggest that S1pr1 dictates cell-surface localization of several apical membrane proteins in ECs. Our results are insightful for development of novel therapeutics to specifically target EC barrier function.  相似文献   

17.
Coordinated migration and progesterone production by granulosa cells is critical to the development of the corpus luteum, but the underlying mechanisms remain obscure. Sphingosine 1-phosphate (S1P), which is associated with follicular fluid high-density lipoprotein (FF-HDL), was previously shown to regulate ovarian angiogenesis. We herein examined the effects of S1P and FF-HDL on the function of granulosa lutein cells. Both FF-HDL and S1P induced migration of primary human granulosa lutein cells (hGCs) and the granulosa lutein cell line HGL5. In addition, FF-HDL but not S1P promoted progesterone synthesis, and neither of the two compounds stimulated proliferation of granulosa lutein cells. Polymerase chain reaction and Western blot experiments demonstrated the expression of S1P receptor type 1 (S1PR1), S1PR2, S1PR3, and S1PR5 but not S1PR4 in hGCs and HGL5 cells. The FF-HDL- and S1P-induced granulosa lutein cell migration was emulated by FTY720, an agonist of S1PR1, S1PR3, S1PR4, and S1PR5, and by VPC24191, an agonist of S1PR1 and S1PR3, but not by SEW2871 and phytosphingosine 1-phosphate, agonists of S1PR1 and S1PR4, respectively. In addition, blockade of S1PR3 with CAY1044, suramine, or pertussis toxin inhibited hGC and HGL5 cell migration toward FF-HDL or S1P, while blockade of S1PR1 and S1PR2 with W146 and JTE013, respectively, had no effect. Both FF-HDL and S1P triggered activation of small G-protein RAC1 and actin polymerization in granulosa cells, and RAC1 inhibition with Clostridium difficile toxin B or NSC23766 abolished FF-HDL- and S1P-induced migration. The FF-HDL-associated S1P promotes granulosa lutein cell migration via S1PR3 and RAC1 activation. This may represent a novel mechanism contributing to the development of the corpus luteum.  相似文献   

18.
19.
Human cytomegalovirus(HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-1217 on angiogenesis and to disclose the underlying mechanism in endothelial cells. We found that HCMV infection of endothelial cells(ECs) enhanced expression of miR-217 and reduced SIRT1 and FOXO3A protein level in 24 hours post infection(hpi). Transfection of miR-217 inhibitor not only depressed cellular migration and tube formation induced by HCMV infection, but also enhanced SIRT1 and FOXO3A protein expression. Additionally, luciferase assay confirmed that miR-217 directly targeted FOXO3A mRNA 3`UTR. Furthermore, pretreatment with resveratrol depressed motility and tube formation of HCMV-infected ECs, which could be reversed by SIRT1 siRNA. Similarly, delivery of FOXO3A overexpression lentivirus suppressed proliferative rate, migration and tube formation of HCMV-infected ECs, which reversed by transfection of FOXO3A siRNA. In summary, HCMV infection of endothelial cells induces angiogenesis by both of miR-217/SIRT1 and miR-217/FOXO3A axis.  相似文献   

20.
Endothelial cell (EC) migration has an important role in angiogenesis. Sphingosine-1 phosphate (S1P) stimulates EC migration via activation of Gi proteins. In this study, we characterized a mouse guanine nucleotide exchange factor (GEF) P-Rex2b for its regulation by Gbetagamma and PI3K and its role in S1P-induced Rac1 activation and cell migration in ECs. We found that co-expression of Gbetagamma or an active form of PI3K (PI3K(AC)) with P-Rex2b increased the SRE.Luciferase (SRE.L) reporter gene activity that can be stimulated by the Rho family of small GTPases including Rac1. Co-expression with P-Rex2b of Gbetagamma and PI3K(AC) or wild type PI3Kgamma that can be activated by Gbetagamma led to further increases in the reporter gene activity. Together with the finding that co-expression of Gbetagamma and/or PI3K(AC) increased the levels of active Rac1, we conclude that P-Rex2b is a Rac GEF that can be regulated by Gbetagamma and PI3K. Additionally, we demonstrated that Gbetagamma interacted with P-Rex2b, probably through P-Rex2b sequences at the PH domain and that the DEP and PDZ domains of P-Rex2b exerted an inhibitory effect on P-Rex2b's activity because their deletion increased the SER.L reporter gene activity. Furthermore, we found that P-Rex2b is involved in S1P-induced Rac1 activation and cell migration in ECs because siRNA-mediated suppression of P-Rex2b expression in ECs-diminished Rac1 activation and cell migration in response to S1P. Therefore, P-Rex2b is a physiologically significant Rac1 GEF that has an important role in the regulation of EC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号