首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gliding motility is an essential and fascinating apicomplexan-typical adaptation to an intracellular lifestyle. Apicomplexan parasites rely on gliding motility for their migration across biological barriers and for host cell invasion and egress. This unusual substratedependent mode of locomotion involves the concerted action of secretory adhesins, a myosin motor, factors regulating actin dynamics and proteases. During invasion, complexes of soluble and transmembrane micronemes proteins (MICs) and rhoptry neck proteins (RONs) are discharged to the apical pole of the parasite, some protein acts as adhesins and bind to host cell receptors whereas others are involved in the moving junction formation. These complexes redistribute towards the posterior pole of the parasite via a physical connection to the parasite actomyosin system and are eventually released from the parasite surface by the action of parasite proteases.  相似文献   

2.
Heaslip AT  Nishi M  Stein B  Hu K 《PLoS pathogens》2011,7(9):e1002201
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.  相似文献   

3.
Host-cell invasion by apicomplexan parasites is extremely rapid and relies on a sequence of events that are tightly controlled in time and space. In most Apicomplexa, the gliding motility and host-cell invasion are tightly coupled to the release of microneme proteins at the apical tip of the parasites and their redistribution toward the posterior pole. This movement is dependent on an intact parasite actomyosin system. Micronemes are involved in the trafficking and storage of ligands (MICs) for host-cell receptors that are not only structurally related but also functionally conserved among the Apicomplexa. In Toxoplasma gondii, the repertoire of membrane-spanning microneme proteins includes adhesins such as TgMIC2 and escorters such as TgMIC6. The latter forms a complex with the soluble adhesins, TgMIC1 and TgMIC4 and assures their proper sorting to the mironemes. Escorters are also anticipated to bridge host-cell receptors to the parasite membrane during invasion. Most TgMICs are proteolytically cleaved either during their transport along the secretory pathway and/or after exocytosis. The biological significance of these processing events is largely unknown. One of these processing events targets a conserved motif close to the membrane-spanning domain causing the release of the processed form of the micronemes from the parasite surface. The cleavages occurring after release might contribute to the disassembly of the complexes and thus to fission between the parasitophorous vacuole and the host plasma membrane at the end of the invasion process. Gliding motility and host-cell penetration involve the redistribution of the micronemes toward the posterior pole of the parasites. This capping process involves actin polymerisation, myosin adenosine triphosphatase activation and the establishment of a connection between the MICs-receptor complexes and the actomyosin system of the parasite. The most carboxy-terminal end of the MICs cytoplasmic tails is implicated in this process, but the precise nature of the connection with the actomyosin system remains to be elucidated.  相似文献   

4.
Pathogenic microbes rely on environmental cues to initiate key events during infection such as differentiation, motility, egress and invasion of cells or tissues. Earlier investigations showed that an acidic environment activates motility of the protozoan parasite T. gondii. Conversely, potassium ions, which are abundant in the intracellular milieu that bathes immotile replicating parasites, suppress motility. Since motility is required for efficient parasite cell invasion and egress we sought to better understand its regulation by environmental cues. We found that low pH stimulates motility by triggering Ca2+-dependent secretion of apical micronemes, and that this cue is sufficient to overcome suppression by potassium ions and drive parasite motility, cell invasion and egress. We also discovered that acidification promotes membrane binding and cytolytic activity of perforin-like protein 1 (PLP1), a pore-forming protein required for efficient egress. Agents that neutralize pH reduce the efficiency of PLP1-dependent perforation of host membranes and compromise egress. Finally, although low pH stimulation of microneme secretion promotes cell invasion, it also causes PLP1-dependent damage to host cells, suggesting a mechanism by which neutral extracellular pH subdues PLP1 activity to allow cell invasion without overt damage to the target cell. These findings implicate acidification as a signal to activate microneme secretion and confine cytolytic activity to egress without compromising the viability of the next cell infected.  相似文献   

5.
Host cell entry by the Apicomplexa is associated with the sequential secretion of invasion factors from specialized apical organelles. Secretion of micronemal proteins (MICs) complexes by Toxoplasma gondii facilitates parasite gliding motility, host cell attachment and entry, as well as egress from infected cells. The shedding of MICs during these steps is mediated by micronemal protein proteases MPP1, MPP2 and MPP3. The constitutive activity of MPP1 leads to the cleavage of transmembrane MICs and is linked to the surface rhomboid protease 4 (ROM4) and possibly to rhomboid protease 5 (ROM5). To determine their importance and respective contribution to MPP1 activity, in this study ROM4 and ROM5 genes were abrogated using Cre‐recombinase and CRISPR‐Cas9 nuclease, respectively, and shown to be dispensable for parasite survival. Parasites lacking ROM4 predominantly engage in twirling motility and exhibit enhanced attachment and impaired invasion, whereas intracellular growth and egress is not affected. The substrates MIC2 and MIC6 are not cleaved in rom4‐ko parasites, in contrast, intramembrane cleavage of AMA1 is reduced but not completely abolished. Shedding of MICs and invasion are not altered in the absence of ROM5; however, this protease responsible for the residual cleavage of AMA1 is able to cleave other AMA family members and exhibits a detectable contribution to invasion in the absence of ROM4.  相似文献   

6.
The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells.  相似文献   

7.
Most Apicomplexa are obligate intracellular parasites and many are important pathogens of human and domestic animals. For a successful cell invasion, they rely on their own motility and on a firm anchorage to their host cell, depending on the secretion of proteins and the establishment of a structure called the moving junction (MJ). The MJ moves from the apical to the posterior end of the parasite, leading to the internalization of the parasite into a parasitophorous vacuole. Based on recent data obtained in Plasmodium and Toxoplasma, an emerging model emphasizes a cooperative role of secreted parasitic proteins in building the MJ and driving this crucial invasive process. More precisely, the parasite exports the microneme protein AMA1 to its own surface and the rhoptry neck RON2 protein as a receptor inserted into the host cell together with other RON partners. Ongoing and future research will certainly help refining the model by characterizing the molecular organization within the MJ and its interactions with both host and parasite cytoskeleton for anchoring of the complex.  相似文献   

8.
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion.  相似文献   

9.
Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.  相似文献   

10.
Apicomplexa constitute one of the largest phyla of protozoa. Most Apicomplexa, including those pathogenic to humans, are obligate intracellular parasites. Their extracellular forms, which are highly polarized and elongated cells, share two unique abilities: they glide on solid substrates without changing their shape and reach an intracellular compartment without active participation from the host cell. There is now ample ultrastructural evidence that these processes result from the backward movement of extracellular interactions along the anteroposterior axis of the parasite. Recent work in several Apicomplexa, including genetic studies in the Plasmodium sporozoite, has provided molecular support for this 'capping' model. It appears that the same machinery drives both gliding motility and host cell invasion. The cytoplasmic motor, a transmembrane bridge and surface ligands essential for cell invasion are conserved among the main apicomplexan pathogens.  相似文献   

11.
Apicomplexan parasites actively secrete proteins at their apical pole as part of the host cell invasion process. The adhesive micronemal proteins are involved in the recognition of host cell receptors. Redistribution of these receptor-ligand complexes toward the posterior pole of the parasites is powered by the actomyosin system of the parasite and is presumed to drive parasite gliding motility and host cell penetration. The microneme protein protease termed MPP1 is responsible for the removal of the C-terminal domain of TgMIC2 and for shedding of the protein during invasion. In this study, we used site-specific mutagenesis to determine the amino acids essential for this cleavage to occur. Mapping of the cleavage site on TgMIC6 established that this processing occurs within the membrane-spanning domain, at a site that is conserved throughout all apicomplexan microneme proteins. The fusion of the surface antigen SAG1 with these transmembrane domains excluded any significant role for the ectodomain in the cleavage site recognition and provided evidence that MPP1 is constitutively active at the surface of the parasites, ready to sustain invasion at any time.  相似文献   

12.
Apicomplexan parasites, including Toxoplasma gondii and Plasmodium sp., are obligate intracellular protozoa. They enter into a host cell by attaching to and then creating an invagination in the host cell plasma membrane. Contact between parasite and host plasma membranes occurs in the form of a ring-shaped moving junction that begins at the anterior end of the parasite and then migrates posteriorly. The resulting invagination of host plasma membrane creates a parasitophorous vacuole that completely envelops the now intracellular parasite. At the start of this process, apical membrane antigen 1 (AMA1) is released onto the parasite surface from specialized secretory organelles called micronemes. The T. gondii version of this protein, TgAMA1, has been shown to be essential for invasion but its exact role has not previously been determined. We identify here a trio of proteins that associate with TgAMA1, at least one of which associates with TgAMA1 at the moving junction. Surprisingly, these new proteins derive not from micronemes, but from the anterior secretory organelles known as rhoptries and specifically, for at least two, from the neck portion of these club-shaped structures. Homologues for these AMA1-associated proteins are found throughout the Apicomplexa strongly suggesting that this moving junction apparatus is a conserved feature of this important class of parasites. Differences between the contributing proteins in different species may, in part, be the result of selective pressure from the different niches occupied by these parasites.  相似文献   

13.
Apicomplexan parasites express various calcium‐dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock‐down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7‐depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium‐dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.  相似文献   

14.
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait.  相似文献   

15.
Most Apicomplexa are obligatory intracellular parasites that multiply inside a so-called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium , the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 ( li ver- s pecific p rotein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1-deficient liver-stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.  相似文献   

16.
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.  相似文献   

17.
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.  相似文献   

18.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

19.
To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin‐based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.  相似文献   

20.
Pomel S  Luk FC  Beckers CJ 《PLoS pathogens》2008,4(10):e1000188
Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K(+)] experienced during egress and invasion, a signal that requires changes of [Ca(2+)](c) in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and replication of intracellular parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号