首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the dynamic and resting intramuscular pressures associated with eccentric and concentric exercise of muscles in a low-compliance compartment. The left and righ leg anterior compartments of eight healthy males (ages 22-32 yr) were exercised by either concentric or eccentric contractions of the same load (400 submaximal contractions at constant rate, 20/min for 20 min at a load corresponding to 15% of individual maximal dorsiflexion torque). Tissue fluid pressures were measured with the slit-catheter technique before, during, and after the exercise. Average peak intramuscular pressure generated during eccentric exercise (236 mmHg) was significantly greater than during concentric exercise (157 mmHg, P less than 0.001). Peak isometric contraction pressure in the eccentrically exercised compartment was significantly higher both within 20 min postexercise and on the second postexercise day (P less than 0.001). Resting pressure 2 days postexercise was significantly higher on the eccentrically exercised side (10.5 mmHg) compared with the concentrically exercised (4.4 mmHg, P less than 0.05). The ability to sustain tension during postexercise isometric contractions was impaired on the "eccentric" side. Soreness was exclusively experienced in the eccentrically exercised muscles. We conclude that eccentric exercise causes significant intramuscular pressure elevation in the anterior compartment, not seen following concentric exercise, and that this may be one of the factors associated with development of delayed muscle soreness in a tight compartment.  相似文献   

2.
The purpose of this study was to determine if pomegranate juice supplementation improved the recovery of skeletal muscle strength after eccentric exercise in subjects who routinely performed resistance training. Resistance trained men (n = 17) were randomized into a crossover design with either pomegranate juice or placebo. To produce delayed onset muscle soreness, the subjects performed 3 sets of 20 unilateral eccentric elbow flexion and 6 sets of 10 unilateral eccentric knee extension exercises. Maximal isometric elbow flexion and knee extension strength and muscle soreness measurements were made at baseline and 2, 24, 48, 72, 96, and 168 hours postexercise. Elbow flexion strength was significantly higher during the 2- to 168-hour period postexercise with pomegranate juice compared with that of placebo (main treatment effect; p = 0.031). Elbow flexor muscle soreness was also significantly reduced with pomegranate juice compared with that of placebo (main treatment effect; p = 0.006) and at 48 and 72 hours postexercise (p = 0.003 and p = 0.038, respectively). Isometric strength and muscle soreness in the knee extensors were not significantly different with pomegranate juice compared with those using placebo. Supplementation with pomegranate juice attenuates weakness and reduces soreness of the elbow flexor but not of knee extensor muscles. These results indicate a mild, acute ergogenic effect of pomegranate juice in the elbow flexor muscles of resistance trained individuals after eccentric exercise.  相似文献   

3.
The purpose of this study was to examine the effects of ibuprofen on delayed onset muscle soreness (DOMS), indirect markers of muscle damage and muscular performance. Nineteen subjects (their mean [+/- SD] age, height, and weight was 24.6 +/- 3.9 years, 176.2 +/- 11.1 cm, 77.3 +/- 18.7 kg) performed the eccentric leg curl exercise to induce muscle soreness in the hamstrings. Nine subjects took an ibuprofen pill of 400 mg every 8 hours within a period of 48 hours, whereas 10 subjects received a placebo randomly (double blind). White blood cells (WBCs) and creatine kinase (CK) were measured at pre-exercise, 4-6, 24, and 48 hours after exercise and maximal strength (1 repetition maximum). Vertical jump performance and knee flexion range of motion (ROM) were measured at pre-exercise, 24 and 48 hours after exercise. Muscle soreness increased (p < 0.05) in both groups after 24 and 48 hours, although the ibuprofen group yielded a significantly lower value (p < 0.05) after 24 hours. The WBC levels were significantly (p < 0.05) increased 4-6 hours postexercise in both groups with no significant difference (p > 0.05) between the 2 groups. The CK values increased (p < 0.05) in the placebo group at 24 and 48 hours postexercise, whereas no significant differences (p > 0.05) were observed in the ibuprofen group. The CK values of the ibuprofen group were lower (p < 0.05) after 48 hours compared with the placebo group. Maximal strength, vertical jump performance, and knee ROM decreased significantly (p < 0.05) after exercise and at 24 and 48 hours postexercise in both the placebo and the ibuprofen groups with no differences being observed (p > 0.05) between the 2 groups. The results of this study reveal that intake of ibuprofen can decrease muscle soreness induced after eccentric exercise but cannot assist in restoring muscle function.  相似文献   

4.
Inflammation and oxidative stress have been implicated in the mechanism of eccentric exercise-induced muscle injury. This study examined whether baseline serum levels of selenium (Se), a trace element that participates in both antioxidant and anti-inflammatory systems, affects the overall response to injury. Thirteen males performed 36 maximal eccentric actions with the elbow flexors of the non-dominant arm on a motorized dynamometer. Venous blood samples were collected immediately before and after exercise at 2, 24, 48, 72 and 96 hours. Established indicators of muscle damage such as maximum isometric torque (MIT), range of motion (ROM), relaxed arm angle (RANG), flexed arm angle (FANG), arm circumference (CIRC), muscle soreness and serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) were determined at the same time points. Baseline serum levels of Se were also measured. Complementary data regarding assessment of Se status were retrieved by the use of a semi-quantitative food frequency questionnaire. All measures changed significantly (p<0.05) after exercise. The main finding of this study was that baseline Se serum levels were associated inversely with CK, LDH and FANG and positively with MIT and ROM (p<0.05). These data suggest that beyond overt Se deficiency, suboptimal Se status possibly worsens muscle functional decrements subsequent to eccentric muscle contractions.  相似文献   

5.
Previous studies have shown that creatine supplementation reduces muscle damage and inflammation following running but not following high-force, eccentric exercise. Although the mechanical strain placed on muscle fibers during high-force, eccentric exercise may be too overwhelming for creatine to exert any protective effect, creatine supplementation may protect skeletal muscle stressed by a resistance training challenge that is more hypoxic in nature. The purpose of this study was to examine the effects of short-term creatine supplementation on markers of muscle damage (i.e., strength, range of motion, muscle soreness, muscle serum protein activity, C-reactive protein) to determine whether creatine supplementation offers protective effects on skeletal muscle following a hypoxic resistance exercise test. Twenty-two healthy, weight-trained men (19-27 years) ingested either creatine or a placebo for 10 days. Following 5 days of supplementation, subjects performed a squat exercise protocol (5 sets of 15-20 repetitions at 50% of 1 repetition maximum [1RM]). Assessments of creatine kinase (CK) and lactate dehydrogenase activity, high-sensitivity C-reactive protein, maximal strength, range of motion (ROM), and muscle soreness (SOR) with movement and palpation were conducted pre-exercise and during a 5-day follow up. Following the exercise test, maximal strength and ROM decreased, whereas SOR and CK increased. Creatine and placebo-supplemented subjects experienced significant decreases in maximal strength (creatine: 13.4 kg, placebo: 17.5 kg) and ROM (creatine: 2.4 degrees , placebo: 3.0 degrees ) immediately postexercise, with no difference between groups. Following the exercise test, there were significant increases in SOR with movement and palpation (p < 0.05 at 24, 48, and 72 hours postexercise), and CK activity (p < 0.05 at 24 and 48 hours postexercise), with no differences between groups at any time. These data suggest that oral creatine supplementation does not reduce skeletal muscle damage or enhance recovery following a hypoxic resistance exercise challenge.  相似文献   

6.
The effects of increased muscle temperature via continuous ultrasound prior to a maximal bout of eccentric exercise were investigated on the symptoms of delayed onset muscle soreness (DOMS) of the elbow flexors. Perceived muscle soreness, upper arm circumferences, range of motion (ROM), and isometric and isokinetic strength were measured over 7 days on 14 college-aged men (n = 6) and women (n = 8). Ten minutes of continuous ultrasound (ULT) or sham-ultrasound (CON) were administered. Muscle temperature was measured in the biceps brachii of both arms. Muscle temperature increased by 1.79 degrees +/- 0.49 degrees C (mean +/- SD) in the experimental arm of the ULT group. Muscle soreness was induced by a single bout of 50 maximal eccentric contractions. The ULT group did not differ significantly (p < 0.05) from the CON group with respect to perceived muscle soreness, upper arm circumference, ROM, and isometric and isokinetic strength. In conclusion, increased muscle temperature failed to provide significant prophylactic effects on the symptoms of DOMS.  相似文献   

7.
To investigate the time-course of changes in transverse relaxation time (T2) and cross-sectional area (CSA) of the quadriceps muscle after a single session of eccentric exercise, magnetic resonance imaging was performed on six healthy male volunteers before and at 0, 7, 15, 20, 30 and 60 min and 12, 24, 36, 48, 72 and 168 h after exercise. Although there was almost no muscle soreness immediately after exercise, it started to increase 1 day after, peaking 1–2 days after the exercise (P<0.01). Immediately after exercise, T2 increased significantly in the rectus femoris, vastus lateralis and intermedius muscles (P<0.05) and decreased quickly continuing until 60 min after exercise. At and after the 12th h, a significant increase was perceived again in the T2 values of the vastus lateralis and intermedius muscles (P<0.01) [maximum 9.3 (SEM 2.8)% and 10.9 (SEM 2.2)%, respectively]. The maximal values were exhibited at 24–36 h after exercise. In contrast, the rectus femoris muscle showed no delayed-stage increase. Also, in CSA, an increase after 12 h was observed in addition to the one immediately after exercise in the vastus lateralis, intermedius and medialis and quadriceps muscles as a whole (P < 0.01), reaching the maximal values at 12–24 h after exercise. The plasma creative kinase activity remained unchanged up to 24 h after and then increased significantly 48 h after exercise (P < 0.05). Beginning 12 h after exercise, the subjects whose T2 and CSA increased less than the others displayed a faster decrease in muscle soreness. These results suggested that T2 and CSA displayed bimodal responses after eccentric exercise and the time-courses of changes in them were similar to those in muscle soreness.  相似文献   

8.
The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ~40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P < 0.001), a 41% decline in resting M-wave (P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness (P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.  相似文献   

9.
Dynamics of the delayed-onset muscle soreness after the exercise on a bicycle ergometer with floating seat under predominantly concentric and eccentric conditions was evaluated using three different tests. Depending on the used test, the maximum delayed-onset muscle soreness was recorded on days 1 to 3 after the exercise without significant differences between the groups performing concentric and eccentric work. A trend of a slower development of both the delayed onset of muscle soreness and the corresponding recovery was recorded by the test with a passive pressure on the working muscle group (knee joint extensor muscles). A positive correlation between the delayed-onset muscle soreness and the relative work intensity was found; the relative intensity was assessed according to the decrease in strength during the recovery period. No correlation between the delayed-onset muscle soreness and exercise duration was detected.  相似文献   

10.
The aim of this study was to determine if severe exercise-induced muscle damage alters the plasma concentrations of glutamine and zinc. Changes in plasma concentrations of glutamine, zinc and polymorphonuclear elastase (an index of phagocytic cell activation) were examined for up to 10 days following eccentric exercise of the knee extensors of one leg in eight untrained subjects. The exercise bout consisted of 20 repetitions of electrically stimulated eccentric muscle actions on an isokinetic dynamometer. Subjects experienced severe muscle soreness and large increases in plasma creatine kinase activity indicative of muscle fibre damage. Peak soreness occurred at 2 days post-exercise and peak creatine kinase activity [21714 (6416) U · l−1, mean (SEM)] occurred at 3 days post-exercise (P < 0.01 compared with pre-exercise). Plasma elastase concentration was increased at 3 days post-exercise compared with pre-exercise (P < 0.05), and is presumably indicative of ongoing phagocytic leucocyte infiltration and activation in the damaged muscles. There were no significant changes in plasma zinc and glutamine concentrations in the days following eccentric exercise. We conclude that exercise-induced muscle damage does not produce changes in plasma glutamine or zinc concentrations despite evidence of phagocytic neutrophil activation. Accepted: 3 November 1997  相似文献   

11.
The purpose of this investigation was to determine the effect of an acute bout of high-volume, full-body resistance training with an eccentric concentration on resting energy expenditure (REE) and indicators of delayed-onset muscle soreness (DOMS). Eight resistance trained (RT) and eight untrained (UT) participants (mean: age = 23.5 years; height = 180.76 cm; weight = 87.58 kg; body fat = 19.34%; lean mass = 68.71 kg) were measured on four consecutive mornings for REE and indicators of DOMS: creatine kinase (CK) and rating of perceived muscle soreness (RPMS). Delayed-onset muscle soreness was induced by performing eight exercises, eight sets, and six repetitions using a 1-second concentric and 3-second eccentric muscle action duration. A two-factor repeated-measures analysis of variance revealed that REE was significantly (p < 0.05) elevated at 24, 48, and 72 hours post compared with baseline measures for both UT and RT groups. Ratings of perceived muscle soreness were significantly elevated within groups for UT and RT at 24 and 48 hours post and for UT only at 72 hours post compared with baseline (p < 0.05). Nonparametric analyses revealed that CK was significantly increased at 24 hours post for both UT and RT and at 48 and 72 hours post for UT only compared with baseline (p < 0.05). Resting energy expenditure and indicators of DOMS were higher in UT compared with RT on all measures, but no significant differences were determined. The main finding of this investigation is that full-body resistance training with an eccentric concentration significantly increased REE up to 72 hours postexercise in UT and RT participants.  相似文献   

12.
We examined differences in muscle damage and muscle performance perturbations in relation to the same volumes of high (HI) and low intensity (LI) of eccentric exercise. Untrained young healthy men (n = 12) underwent 2 isokinetic quadriceps eccentric exercise sessions, 1 on each randomly selected leg, separated by a 2-week interval. In the first session subjects performed HI exercise (i.e., 12 sets of 10 maximal voluntary efforts). In the second session, volunteers were subjected to continuous exercise of LI (50% of peak torque) until the total work done was approximately equal to that generated during HI. Muscle damage (serum creatine kinase concentration [CK], delayed onset of muscle soreness, and range of motion) and muscle performance (eccentric [EPT] and isometric peak torque [IPT]) indicators were assessed pre-exercise and 24, 48, 72, and 96 hours postexercise. Compared to baseline data, changes in muscle damage indicators were significantly different (p < 0.05) at almost all postexercise time points in both conditions. However, apart from the significant elevation of CK at 24 hours after HI (p < 0.05), no other significant differences were observed between the 2 exercise conditions (p > 0.05). The main finding in relation to muscle performance was that decrements following HI exercise were significantly greater (p < 0.05) compared to LI. Compared with baseline data, the EPT values following HI and LI exercise were as follows: 24 hours, 72.1% vs. 92%; 48 hours, 81.9% vs. 94.8%; 72 hours, 77.7% vs. 100.6%; 96 hours, 86.8% vs. 107.9%. The corresponding data for IPT were as follows: 24 hours, 86.4% vs. 102.8%; 48 hours, 84.2% vs. 107%; 72 hours, 84.8% vs. 109.2%; 96 hours, 86.8% vs. 114.4%. These results indicate that matching volumes of HI and LI eccentric exercise have similar effects on muscle damage, but HI has a more prominent effect on muscle performance.  相似文献   

13.
The purpose of this study was to investigate gender-specific motor control strategies during eccentric exercise and delayed onset muscle soreness (DOMS) in the shoulder region. Twelve healthy males and females participated in the study. Eccentric shoulder exercises were conducted on the dominant shoulder while the other side served as control. The exerted force, range of shoulder elevation, rating of perceived exertion, pain intensity, and surface electromyography (EMG) from the trapezius muscles were recorded and analyzed. A significant decrease in exerted force during exercise was only found in males despite similar rating of perceived exertion among genders. During eccentric exercise: males showed increasing root mean square (RMS) of the EMG while a decrease occurred for females, no difference between genders in mean power frequency of the EMG were seen. During static and dynamic contractions: no differences between genders in pain intensity or RMS were observed; RMS of the exercised side were lower than that of the control side (P<0.05) at 24 h after exercise. The results indicated a more prominent muscle fatigue resistance in females compared with males and mobilization of different muscle activation strategies during eccentric exercise. A protective adaptation to DOMS, i.e. decrease in RMS values was found with no gender differences.  相似文献   

14.
Impaired muscle glycogen resynthesis after eccentric exercise   总被引:2,自引:0,他引:2  
Eight men performed 10 sets of 10 eccentric contractions of the knee extensor muscles with one leg [eccentrically exercised leg (EL)]. The weight used for this exercise was 120% of the maximal extension strength. After 30 min of rest the subjects performed two-legged cycling [concentrically exercised leg (CL)] at 74% of maximal O2 uptake for 1 h. In the 3 days after this exercise four subjects consumed diets containing 4.25 g CHO/kg body wt, and the remainder were fed 8.5 g CHO/kg. All subjects experienced severe muscle soreness and edema in the quadriceps muscles of the eccentrically exercised leg. Mean (+/- SE) resting serum creatine kinase increased from a preexercise level of 57 +/- 3 to 6,988 +/- 1,913 U/l on the 3rd day of recovery. The glycogen content (mmol/kg dry wt) in the vastus lateralis of CL muscles averaged 90, 395, and 592 mmol/kg dry wt at 0, 24, and 72 h of recovery. The EL muscle, on the other hand, averaged 168, 329, and 435 mmol/kg dry wt at these same intervals. Subjects receiving 8.5 g CHO/kg stored significantly more glycogen than those who were fed 4.3 g CHO/kg. In both groups, however, significantly less glycogen was stored in the EL than in the CL.  相似文献   

15.
Previous research has demonstrated that prior exercise may reduce the magnitude of muscle soreness and impaired function (i.e., repeated bout effect [RBE]) observed during subsequent eccentric exercise. Previous investigations have predominantly used research designs that include single-joint exercise performed by untrained individuals. It is unknown how resistance trained individuals respond to novel multi-joint eccentric actions of the upper body and whether prior exercise offers protection. Thirty-one resistance trained men (23.4 +/- 3.5 y, 177.2 +/- 5.1 cm, 86.4 +/- 16.5 kg, mean +/- SD) were randomly assigned to repeated bout ([RB] N = 15) or single bout ([CON] N = 16) conditions. Both groups performed 100 eccentric actions of the bench press ([ECC] at 70% concentric 1 repetition maximum) to induce muscle injury. Bilateral maximal isometric force, dynamic exercise performance (e.g., bench press throws), and muscle soreness were measured before, immediately after, and at 24 and 48 hours post-ECC. Total work, percent fatigue, and rating of perceived exertion (ECC) data were collected during ECC. Those assigned to RB condition exhibited less fatigue (9.5 vs. 22.6%) and lower RPE (14.8 vs. 17.1) during ECC. A significant interaction (p < 0.05) was found such that RB individuals experienced less soreness at 24 (6.5 vs. 4.9) and 48 (6.6 vs. 3.9) hours postexercise than the CON condition. No significant group differences (p < 0.05) were found for any measured performance variable. Although soreness, fatigue, and RPE suggest a RBE, this was not found in regards to exercise performance. It appears that in trained men, performing a strenuous high-volume eccentric exercise bout 2 weeks prior to an identical future bout offers no additional amelioration of impaired exercise performance.  相似文献   

16.
The aim of the present study was to examine the effect of acute plyometric exercise on indices of muscle damage and collagen breakdown. Nine untrained men performed an intense bout of plyometric jumping exercises (experimental group) and nine men remained at rest (control group). Seven days before and 24, 48, and 72 hours after plyometric exercise or rest, several physiological and biochemical indices of muscle damage and two biochemical indices of collagen damage were determined. No significant changes in concentric and eccentric peak torque of knee extensors and flexors or flexion and extension range of motion were found after the plyometric exercise. Delayed-onset muscle soreness increased 48 hours after exercise. Creatine kinase increased 48 and 72 hours post exercise, whereas lactate dehydrogenase increased 24, 48, and 72 hours post exercise. Serum hydroxyproline increased 24 hours post exercise, peaked at 48 hours, and remained elevated up to 72 hours post exercise. Hydroxylysine (which was measured only before exercise and at 48 hours) was found increased 48 hours post exercise. No differences were found in any physiological or biochemical index in the control group. Intense plyometric exercise increased muscle damage, delayed-onset muscle soreness, and serum indices of collagen breakdown without a concomitant decrease in the functional capacity of muscles. Hydroxyproline and hydroxylysine levels in serum seem promising measures for describing exercise-induced collagen degradation. Coaches need to keep in mind that by using plyometric activities, despite the increased muscle damage and collagen turnover that follow, it is not necessarily accompanied by decreases in skeletal muscle capacity.  相似文献   

17.
The spatial distribution of pressure sensitivity and muscle hardness was examined on normal muscle tissue and muscle tissue after induction of delayed onset muscle soreness (DOMS). The pressure sensitivity and muscle hardness were assessed at nine sites on the tibialis muscle from the proximal to distal tendon on two separate days. In total 37 healthy volunteers participated in three experiments. In the first experiment pressure pain threshold (PPT) and pressure pain tolerance (PPTO) were assessed. Decreased PPT and PPTO were found on day 2, 7 days after day 1. Proximal and distal stimulation sites were harder compared to muscle belly sites. In a second experiment two different probe sizes were used. Variation in PPT between the nine sites was found for the large probe with muscle belly being less sensitive to pressure stimulation compared to proximal and distal sites. The most proximal stimulation site was harder compared to muscle belly sites. In a third experiment PPT and muscle hardness were assessed before and 48 h after eccentric exercise. PPT at two muscle belly sites was significantly decreased during DOMS. No specific sites were harder during DOMS, the average muscle hardness across sites was however significantly increased. Decreased PPT and increased muscle hardness did not correlate. In conclusion, within subjects the pressure sensitivity varies along the musculoskeletal unit. In DOMS, specific muscle belly sites were more sensitive to pressure stimulation. Muscle-tendon sites were harder compared to muscle belly sites.  相似文献   

18.
The spatial distribution of pressure sensitivity and muscle hardness was examined on normal muscle tissue and muscle tissue after induction of delayed onset muscle soreness (DOMS). The pressure sensitivity and muscle hardness were assessed at nine sites on the tibialis muscle from the proximal to distal tendon on two separate days. In total 37 healthy volunteers participated in three experiments. In the first experiment pressure pain threshold (PPT) and pressure pain tolerance (PPTO) were assessed. Decreased PPT and PPTO were found on day 2, 7 days after day 1. Proximal and distal stimulation sites were harder compared to muscle belly sites. In a second experiment two different probe sizes were used. Variation in PPT between the nine sites was found for the large probe with muscle belly being less sensitive to pressure stimulation compared to proximal and distal sites. The most proximal stimulation site was harder compared to muscle belly sites. In a third experiment PPT and muscle hardness were assessed before and 48?h after eccentric exercise. PPT at two muscle belly sites was significantly decreased during DOMS. No specific sites were harder during DOMS, the average muscle hardness across sites was however significantly increased. Decreased PPT and increased muscle hardness did not correlate. In conclusion, within subjects the pressure sensitivity varies along the musculoskeletal unit. In DOMS, specific muscle belly sites were more sensitive to pressure stimulation. Muscle–tendon sites were harder compared to muscle belly sites.  相似文献   

19.
The effects of performing light eccentric exercise (LB) during the period of recovery from a heavy eccentric exercise bout (HB) were studied. An experimental and a control group, each consisting of nine college age volunteers (seven women, two men) performed two HB--HB1 and HB2--14 days apart, using the elbow flexor and extensor muscles of one arm. The experimental group performed an additional LB on the day following the first HB. HB1 resulted in muscle soreness, muscle weakness, changes in elbow joint flexibility, and large delayed increases in serum creatine kinase (CK) activity. The HB2 produced smaller changes in all parameters, indicating that adaptation to the effects of eccentric exercise had occurred in the muscle. The LB did not alter muscle soreness, strength or elbow flexibility, but did reduce or delay CK activity increase after HB1. The LB had no apparent effect on adaptation to HB2.  相似文献   

20.
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号