首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Sexual size dimorphism (SSD) is widespread within the animal kingdom. Rensch’s rule describes a relationship between SSD and body size: SSD increases with body size when males are the larger sex, and decreases with body size when females are the larger sex. Rensch’s rule is well supported for taxa that exhibit male-biased SSD but patterns of allometry among taxa with female-biased size dimorphism are mixed, there is evidence both for and against the rule. Furthermore, most studies have investigated Rensch’s rule across a variety of taxa; but among-population studies supporting Rensch’s rule are lacking, especially in taxa that display only slight SSD. Here, we tested whether patterns of intraspecific variation in SSD in greater horseshoe bats conform to Rensch’s rule, and evaluated the contribution of latitude to Rensch’s rule. Our results showed SSD was consistently female-biased in greater horseshoe bats, although female body size was only slightly larger than male body size. The slope of major axis regression of log10 (male) on log10 (female) was significantly different from 1. Forearm length for both sexes of greater horseshoe bats was significantly negatively correlated with latitude, and males displayed a slightly but nonsignificant steeper latitudinal cline in body size than females. We suggest that variation in patterns of SSD among greater horseshoe bat populations is consistent with Rensch’s rule indicating that males were the more variable sex. Males did not have a steeper body size–latitude relationship than females suggesting that sex-specific latitudinal variation in body size may not be an important contributing factor to Rensch’s rule. Future research on greater horseshoe bats might best focus on more comprehensive mechanisms driving the pattern of female-biased SSD variation.  相似文献   

2.
Understanding how phenotypic diversity evolves is a major interest of evolutionary biology. Habitat use is an important factor in the evolution of phenotypic diversity of many animal species. Interestingly, male and female phenotypes have been frequently shown to respond differently to environmental variation. At the macroevolutionary level, this difference between the sexes is frequently analysed using phylogenetic comparative tools to assess variation in sexual dimorphism (SD) across taxa in relation to habitat. A shortcoming of such analyses is that they evaluate the degree of dimorphism itself and therefore they do not provide access to the evolutionary trajectories of each sex. As such, the relative contribution of male and female phenotypes on macroevolutionary patterns of sexual dimorphism cannot be directly assessed. Here, we investigate how habitat use shapes phenotypic diversity in wall lizards using phylogenetic comparative tools to simultaneously assess the tempo and mode of evolution in males, females and the degree of sexual dimorphism. We find that both sexes have globally diversified under similar, but not identical, processes, where habitat use seems to drive macroevolutionary variation in head shape, but not in body size or relative limb length. However, we also observe small differences in the evolutionary dynamics of male and female phenotypes that have a marked impact on macroevolutionary patterns of SD, with important implications for our interpretation of what drives phenotypic diversification within and between the sexes.  相似文献   

3.
Rensch’s rule describes a pattern of allometry in sexual size dimorphism (SSD): when males are the larger sex (male-biased SSD), SSD increases with increasing body size, and when females are the larger sex (female-biased SSD), SSD decreases with increasing body size. While this expectation generally holds for taxa with male-biased or mixed SSD, examples of allometry for SSD consistent with Rensch’s rule in groups with primarily female-biased SSD are remarkably rare. Here, I show that the majority of dwarf chameleons (Bradypodion spp.) have female-biased SSD. In accordance with Rensch’s rule, the group exhibits an allometric slope of log(female size) on log(male size) less than one, although statistical significance is dependent on the phylogenetic comparative method used. In this system, this pattern is likely due to natural selection on both male and female body size, combined with fecundity selection on female body size. In addition to quantifying SSD and testing Rensch’s rule in dwarf chameleons, I discuss reasons why Rensch’s rule may only rarely apply to taxa with female-biased SSD.  相似文献   

4.
Hummingbirds are known for their distinctive patterns of sexual dimorphism, with many species exhibiting sex-related differences in various ecologically-relevant traits, including sex-specific differences in bill shape. It is generally assumed that such patterns are consistent across all hummingbird lineages, yet many taxa remain understudied. In this study we examined patterns of sexual size and sexual shape dimorphism in bills of 32 of 35 species in the monophyletic Mellisugini lineage. We also compared patterns of bill size dimorphism in this group to other hummingbird lineages, using data from 219 hummingbird species. Overall, the presence and degree of sexual size dimorphism was similar across all hummingbird lineages, with the majority of Mellisugini species displaying female-biased sexual size dimorphism, patterns that remain unchanged when analyzed in a phylogenetic context. Surprisingly however, we found that sexual dimorphism in bill shape was nearly absent in the Mellisugini clade, with only 3 of the 32 species examined displaying bill shape dimorphism. Based on observations in other hummingbird lineages, the lack of sexual shape dimorphism in Mellisugini is particularly unusual. We hypothesize that the patterns of sexual size dimorphism observed here may be the consequence of differential selective forces that result from competition for ecological resources. We further propose that an influential mechanism underlying shape dimorphism is competition and niche segregation. Taken together, the evolutionary changes in patterns of sexual shape dimorphism observed in Mellisugini suggest that the evolutionary trends of sexual dimorphism in the Trochilidae are far more dynamic than was previously believed.  相似文献   

5.
Allometric trends in the degree of sexual dimorphism with body size have long fascinated evolutionary biologists. Many male-biased clades display more prominent sexual dimorphism in larger taxa (Rensch's rule), with most examples documenting this pattern for body size dimorphism. Although sexual dimorphism in traits other than body size is equally functionally relevant, characterizing allometric patterns of sexual dimorphism in such traits is hampered by lack of an analytical framework that can accommodate multivariate phenotypes. In this article, we derive a multivariate equivalency for investigating trends in sexual dimorphism—relative to overall body size—across taxa and provide a generalized test to determine whether such allometric patterns correspond with Rensch's rule. For univariate linear traits such as body size, our approach yields equivalent results to those from standard procedures, but our test is also capable of detecting trends in multivariate datasets such as shape. Computer simulations reveal that the method displays appropriate statistical properties, and an empirical example in Mediterranean lizards provides the first demonstration of Rensch's rule in a multivariate phenotype (head shape). Our generalized procedure substantially extends the analytical toolkit for investigating macroevolutionary patterns of sexual dimorphism and seeking a better understanding of the processes that underlie them.  相似文献   

6.
Rensch’s rule describes the pattern of sexual size dimorphism (SSD) claiming that in taxa where males are the larger sex, larger species generally exhibit higher male to female body size ratios. Agreement with Rensch’s rule is manifested by the slope of the allometric relationship between male and female body size exceeding one. In this paper we have tested the hypothesis that recent rapid evolutionary changes of body size accompanying domestication process and morphological radiation of domestic breeds follow Rensch’s rule. We have analyzed literature data on adult body size of males and females in domestic cows, yaks, buffaloes and other bovines (315, 12, 24 and 2 breeds, respectively) and compared it with SSD in 18 wild species/subspecies of the subfamily Bovinae. Male to female body mass ratio in domestic cows (1.48) was fairly comparable to that found in other species of domestic and wild bovines except domestic buffaloes (1.19). In cows we have demonstrated clear positive allometry of male to female body mass ratio (slope 1.21) predicted by Rensch’s rule, however, no such clear relationship was found when body mass was replaced by shoulder height. These findings are in agreement with those we have previously reported in other livestock species, goats and sheep.  相似文献   

7.
Sexual selection contributes strongly to the evolution of sexual dimorphism among animal taxa. However, recent comparative analyses have shown that evolution of sexual dimorphism can be influenced by extrinsic factors like mating system and environment, and also that different types of sexual dimorphism may present distinct evolutionary pathways. Investigating the co-variation among different types of sexual dimorphism and their association with environmental factors can therefore provide important information about the mechanisms generating variation in sexual dimorphism among contemporary species. Using phylogenetic comparative analyses comparing 49 species of Tanganyikan cichlid fishes, we first investigated the pairwise relationship between three types of sexual dimorphism [size dimorphism (SSD), colour dimorphism (COD) and shape dimorphism (SHD)] and how they were related to the strength of pre- and post-copulatory sexual selection. We then investigated the influence of ecological features on sexual dimorphism. Our results showed that although SSD was associated with the overall strength of sexual selection it was not related to other types of sexual dimorphism. Also, SSD co-varied with female size and spawning habitat, suggesting a role for female adaptations to spawn in small crevices and shells influencing SSD in this group. Further, COD and SHD were positively associated and both show positive relationships with the strength of sexual selection. Finally, the level of COD and SHD was related to habitat complexity. Our results thus highlight distinct evolutionary pathways for different types of sexual dimorphism and further that ecological factors have influenced the evolution of sexual dimorphism in Tanganyikan cichlid fishes.  相似文献   

8.
Environmental gradients in a marine setting may have significant effects on morphological variations and evolutionary patterns, including sexual dimorphism variations within and between fish populations. We analyzed sexual shape and size dimorphism in accordance with Rensch and Bergmann’s rules in five coastal populations of the gobiid Bathygobius soporator along 4000 km of the Brazilian coastline. The populations differ significantly in sexual body shape dimorphism, with a tendency toward reduced intrapopulation dimorphism, increasing with latitude. Body size variation was significant between populations and population vs. sex, and inverse to Bergmann’s rule. Moreover, size dimorphism among populations of B. soporator does not follow Rensch’s rule. These data represent a rare example of inter and intrapopulation spatial variation in sexual dimorphism associated with latitude in marine fish. This suggests a complex and particularized scenario of biotic and abiotic interactions acting on local populations of B. soporator in extensive coastal areas of the Western Atlantic, with profound implications for species evolution.  相似文献   

9.
Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male‐biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female‐biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male‐biased, but not consistently when SSD is female‐biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female‐biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female‐biased SSD.  相似文献   

10.
The processes governing the evolution of sexual dimorphism provided a foundation for sexual selection theory. Two alternative processes, originally proposed by Darwin and Wallace, differ primarily in the timing of events creating the dimorphism. In the process advocated by Darwin, a novel ornament arises in a single sex, with no temporal separation in the origin and sex-limitation of the novel trait. By contrast, Wallace proposed a process where novel ornaments appear simultaneously in both sexes, but are then converted into sex-limited expression by natural selection acting against showy coloration in one sex. Here, we investigate these alternative modes of sexual dimorphism evolution in a phylogenetic framework and demonstrate that both processes contribute to dimorphic wing patterns in the butterfly genera Bicyclus and Junonia. In some lineages, eyespots and bands arise in a single sex, whereas in other lineages they appear in both sexes but are then lost in one of the sexes. In addition, lineages displaying sexual dimorphism were more likely to become sexually monomorphic than they were to remain dimorphic. This derived monomorphism was either owing to a loss of the ornament ('drab monomorphism') or owing to a gain of the same ornament by the opposite sex ('mutual ornamentation'). Our results demonstrate the necessity of a plurality in theories explaining the evolution of sexual dimorphism within and across taxa. The origins and evolutionary fate of sexual dimorphism are probably influenced by underlying genetic architecture responsible for sex-limited expression and the degree of intralocus sexual conflict. Future comparative and developmental work on sexual dimorphism within and among taxa will provide a better understanding of the biases and constraints governing the evolution of animal sexual dimorphism.  相似文献   

11.
Understanding the evolution of body size and sexual size dimorphism has been a longstanding goal in evolutionary biology. Previous work has shown that environmental stress can constrain male‐biased sexual size dimorphism at the population level, but we know little about how this might translate to geographical patterns of body size and sexual size dimorphism at the species level. Environmental constraints due to a highly seasonal, resource‐poor and/or variable environment have often been cited to explain the unusual lack of sexual size dimorphism among Madagascar's diverse and numerous primate taxa; however, empirical tests of this hypothesis are lacking. Using a phylogenetic approach and a geographical information system platform, we explored the role of seasonality, interannual variability and annual measures of temperature and rainfall, and net primary productivity on patterns of body size and sexual size dimorphism across 130 species of primates. Phylogenetically controlled comparisons showed no support for a role of environmental constraints in moderating sexual size dimorphism at the interspecific level, despite significant associations of environmental variables with body mass. Results suggest that the focus of discussions that have dominated in the last two decades regarding the role of environmental constraints in driving patterns of monomorphism of Madagascar's lemurs should be reconsidered; however, the conundrum remains.  相似文献   

12.
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes.  相似文献   

13.
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female‐biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female‐biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.  相似文献   

14.
Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.  相似文献   

15.
In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.  相似文献   

16.
Co-evolution between phenotypic variation and other traits is of paramount importance for our understanding of the origin and maintenance of polymorphism in natural populations. We tested whether the evolution of plumage polymorphism in birds of prey and owls was supported by the apostatic selection hypothesis using ecological and life-history variables in birds of prey and owls and performing both cross taxa and independent contrast analyses. For both bird groups, we did not find any support for the apostatic selection hypothesis being the maintaining factor for the polymorphism: plumage polymorphism was not more common in taxa hunting avian or mammalian prey, nor in migratory species. In contrast, we found that polymorphism was related to variables such as sexual plumage dimorphism, population size and range size, as well as breeding altitude and breeding latitude. These results imply that the most likely evolutionary correlate of polymorphism in both bird groups is population size, different plumage morphs might simply arise in larger populations most likely because of a higher probability of mutations and then be maintained by sexual selection.  相似文献   

17.
Plants of Lycium californicum, L. exsertum, and L. fremontii produce flowers that are either male-sterile (female) or hermaphroditic, and populations are morphologically gynodioecious. As is commonly found in gynodioecious species, flowers on female plants are smaller than those on hermaphrodites for a number of floral traits. Floral size dimorphism has often been hypothesized to be the result of either a reduction in female flower size that allows reallocation to greater fruit and seed production, or an increase in hermaphroditic flower size due to the increased importance of pollinator attraction and pollen export for hermaphroditic flowers. We provide a test of these two alternatives by measuring 11 floral characters in eight species of Lycium and using a phylogeny to reconstruct the floral size shifts associated with the evolution of gender dimorphism. Our analyses suggest that female flowers are reduced in size relative to the ancestral condition, whereas flowers on hermaphrodites have changed only slightly in size. Female and hermaphroditic flowers have also diverged both from one another and from ancestral cosexual species in several shape characteristics. We expected sexual dimorphism to be similar among the three dimorphic taxa, as gender dimorphism evolved only a single time in the ancestor of the American dimorphic lineage. While the floral sexual dimorphism is broadly similar among the three dimorphic species, there are some species-specific differences. For example, L. exsertum has the greatest floral size dimorphism, whereas L. fremontii had the greatest size-independent dimorphism in pistil characters. To determine the degree to which phylogenetic uncertainty affected reconstruction of ancestral character states, we performed a sensitivity analysis by reconstructing ancestral character states on alternative topologies. We argue that investigations such as this one, that examine floral evolution from an explicitly phylogenetic perspective, provide new insights into the study of the evolution of floral sexual dimorphism.  相似文献   

18.
Natural selection can influence the evolution of sexual dimorphism through selection for sex-specific ecomorphological adaptations. The role of natural selection in the evolution of sexual dimorphism, however, has received much less attention than that of sexual selection. We examined the relationship between habitat structure and both male and female morphology, and sexual dimorphism in size and shape, across 21 populations of dwarf chameleon (genus Bradypodion). Morphological variation in dwarf chameleons was strongly associated with quantitative, multivariate aspects of habitat structure and, in most cases, relationships were congruent between the sexes. However, we also found consistent relationships between habitat and sexual dimorphism. These resulted from both differences in magnitude of ecomorphological relationships that were otherwise congruent between the sexes, as well as in sex-specific ecomorphological adaptations. Our study provides evidence that natural selection plays an important role in the evolution of sexual dimorphism.  相似文献   

19.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

20.
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号