首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of infectious disease transmission, high heterogeneity in individual infectiousness indicates that a few index cases can generate large numbers of secondary cases, a phenomenon commonly known as superspreading. The potential of disease superspreading can be characterized by describing the distribution of secondary cases (of each seed case) as a negative binomial (NB) distribution with the dispersion parameter, k. Based on the feature of NB distribution, there must be a proportion of individuals with individual reproduction number of almost 0, which appears restricted and unrealistic. To overcome this limitation, we generalized the compound structure of a Poisson rate and included an additional parameter, and divided the reproduction number into independent and additive fixed and variable components. Then, the secondary cases followed a Delaporte distribution. We demonstrated that the Delaporte distribution was important for understanding the characteristics of disease transmission, which generated new insights distinct from the NB model. By using real-world dataset, the Delaporte distribution provides improvements in describing the distributions of COVID-19 and SARS cases compared to the NB distribution. The model selection yielded increasing statistical power with larger sample sizes as well as conservative type I error in detecting the improvement in fitting with the likelihood ratio (LR) test. Numerical simulation revealed that the control strategy-making process may benefit from monitoring the transmission characteristics under the Delaporte framework. Our findings highlighted that for the COVID-19 pandemic, population-wide interventions may control disease transmission on a general scale before recommending the high-risk-specific control strategies.  相似文献   

2.
Historically, emerging and reemerging infectious diseases have caused large, deadly, and expensive multinational outbreaks. Often outbreak investigations aim to identify who infected whom by reconstructing the outbreak transmission tree, which visualizes transmission between individuals as a network with nodes representing individuals and branches representing transmission from person to person. We compiled a database, called OutbreakTrees, of 382 published, standardized transmission trees consisting of 16 directly transmitted diseases ranging in size from 2 to 286 cases. For each tree and disease, we calculated several key statistics, such as tree size, average number of secondary infections, the dispersion parameter, and the proportion of cases considered superspreaders, and examined how these statistics varied over the course of each outbreak and under different assumptions about the completeness of outbreak investigations. We demonstrated the potential utility of the database through 2 short analyses addressing questions about superspreader epidemiology for a variety of diseases, including Coronavirus Disease 2019 (COVID-19). First, we found that our transmission trees were consistent with theory predicting that intermediate dispersion parameters give rise to the highest proportion of cases causing superspreading events. Additionally, we investigated patterns in how superspreaders are infected. Across trees with more than 1 superspreader, we found preliminary support for the theory that superspreaders generate other superspreaders. In sum, our findings put the role of superspreading in COVID-19 transmission in perspective with that of other diseases and suggest an approach to further research regarding the generation of superspreaders. These data have been made openly available to encourage reuse and further scientific inquiry.

This study compiles and standardizes reported infectious disease transmission trees to analyze trends in superspreader frequency and generation; these data support theories that intermediate dispersion parameters give rise to the highest proportion of cases causing superspreading events, and that superspreaders generate other superspreaders.  相似文献   

3.
Different nosocomial pathogen species have varying infectivity and durations of infectiousness, while the transmission route determines the contact rate between pathogens and susceptible patients. To determine if the pathogen species and transmission route affects the size and spread of outbreaks, we perform a meta-analysis that examines data from 933 outbreaks of hospital-acquired infection representing 14 pathogen species and 8 transmission routes. We find that the mean number of cases in an outbreak is best predicted by the pathogen species and the mean number of cases per day is best predicted by the species-transmission route combination. Our fitted model predicts the largest mean number of cases for Salmonella outbreaks (22.3) and the smallest mean number of cases for Streptococci outbreaks (8.5). The largest mean number of cases per day occurs during Salmonella outbreaks spread via the environment (0.33) and the smallest occurs for Legionella outbreaks spread by multiple transmission routes (0.005). When combined with information on the frequency of outbreaks these findings could inform the design of infection control policies in hospitals.  相似文献   

4.
Although heterogeneity in contact rate, physiology, and behavioral response to infection have all been empirically demonstrated in host–pathogen systems, little is known about how interactions between individual variation in behavior and physiology scale‐up to affect pathogen transmission at a population level. The objective of this study is to evaluate how covariation between the behavioral and physiological components of transmission might affect epidemic outcomes in host populations. We tested the consequences of contact rate covarying with susceptibility, infectiousness, and infection status using an individual‐based, dynamic network model where individuals initiate and terminate contacts with conspecifics based on their behavioral predispositions and their infection status. Our results suggest that both heterogeneity in physiology and subsequent covariation of physiology with contact rate could powerfully influence epidemic dynamics. Overall, we found that 1) individual variability in susceptibility and infectiousness can reduce the expected maximum prevalence and increase epidemic variability; 2) when contact rate and susceptibility or infectiousness negatively covary, it takes substantially longer for epidemics to spread throughout the population, and rates of epidemic spread remained suppressed even for highly transmissible pathogens; and 3) reductions in contact rate resulting from infection‐induced behavioral changes can prevent the pathogen from reaching most of the population. These effects were strongest for theoretical pathogens with lower transmissibility and for populations where the observed variation in contact rate was higher, suggesting that such heterogeneity may be most important for less infectious, more chronic diseases in wildlife. Understanding when and how variability in pathogen transmission should be modelled is a crucial next step for disease ecology.  相似文献   

5.

Background

Norovirus (NoV) transmission may be impacted by changes in symptom intensity. Sudden onset of vomiting, which may cause an initial period of hyper-infectiousness, often marks the beginning of symptoms. This is often followed by: a 1–3 day period of milder symptoms, environmental contamination following vomiting, and post-symptomatic shedding that may result in transmission at progressively lower rates. Existing models have not included time-varying infectiousness, though representing these features could add utility to models of NoV transmission.

Methods

We address this by comparing the fit of three models (Models 1–3) of NoV infection to household transmission data from a 2009 point-source outbreak of GII.12 norovirus in North Carolina. Model 1 is an SEIR compartmental model, modified to allow Gamma-distributed sojourn times in the latent and infectious classes, where symptomatic cases are uniformly infectious over time. Model 2 assumes infectiousness decays exponentially as a function of time since onset, while Model 3 is discontinuous, with a spike concentrating 50% of transmissibility at onset. We use Bayesian data augmentation techniques to estimate transmission parameters for each model, and compare their goodness of fit using qualitative and quantitative model comparison. We also assess the robustness of our findings to asymptomatic infections.

Results

We find that Model 3 (initial spike in shedding) best explains the household transmission data, using both quantitative and qualitative model comparisons. We also show that these results are robust to the presence of asymptomatic infections.

Conclusions

Explicitly representing explosive NoV infectiousness at onset should be considered when developing models and interventions to interrupt and prevent outbreaks of norovirus in the community. The methods presented here are generally applicable to the transmission of pathogens that exhibit large variation in transmissibility over an infection.  相似文献   

6.
Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation.  相似文献   

7.
Identifying order of symptom onset of infectious diseases might aid in differentiating symptomatic infections earlier in a population thereby enabling non-pharmaceutical interventions and reducing disease spread. Previously, we developed a mathematical model predicting the order of symptoms based on data from the initial outbreak of SARS-CoV-2 in China using symptom occurrence at diagnosis and found that the order of COVID-19 symptoms differed from that of other infectious diseases including influenza. Whether this order of COVID-19 symptoms holds in the USA under changing conditions is unclear. Here, we use modeling to predict the order of symptoms using data from both the initial outbreaks in China and in the USA. Whereas patients in China were more likely to have fever before cough and then nausea/vomiting before diarrhea, patients in the USA were more likely to have cough before fever and then diarrhea before nausea/vomiting. Given that the D614G SARS-CoV-2 variant that rapidly spread from Europe to predominate in the USA during the first wave of the outbreak was not present in the initial China outbreak, we hypothesized that this mutation might affect symptom order. Supporting this notion, we found that as SARS-CoV-2 in Japan shifted from the original Wuhan reference strain to the D614G variant, symptom order shifted to the USA pattern. Google Trends analyses supported these findings, while weather, age, and comorbidities did not affect our model’s predictions of symptom order. These findings indicate that symptom order can change with mutation in viral disease and raise the possibility that D614G variant is more transmissible because infected people are more likely to cough in public before being incapacitated with fever.  相似文献   

8.
Many recent disease outbreaks (e.g. SARS, foot-and-mouth disease) exhibit superspreading, where relatively few individuals cause a large number of secondary cases. Epidemic models have previously treated this as a demographic phenomenon where each individual has an infectivity allocated at random from some distribution. Here, it is shown that superspreading can also be regarded as being caused by environmental variability, where superspreading events (SSEs) occur as a stochastic consequence of the complex network of interactions made by individuals. This interpretation based on SSEs is compared with data and its efficacy in evaluating epidemic control strategies is discussed.  相似文献   

9.
Recently, evidence has been presented to suggest that there are significant heterogeneities in the transmission of communicable diseases. Here, a stochastic simulation model of an epidemic process that allows for these heterogeneities is used to demonstrate the potentially considerable effect that heterogeneity of transmission will have on epidemic outbreak size distributions. Our simulation results agree well with approximations gained from the theory of branching processes. Outbreak size distributions have previously been used to infer basic epidemiological parameters. We show that if superspreading does occur then such distributions must be interpreted with care. The simulation results are discussed in relation to measles epidemics in isolated populations and in predominantly urban scenarios. The effect of three different disease control policies on outbreak size distributions are shown for varying levels of heterogeneity and disease control effort.  相似文献   

10.
We study the spread of susceptible-infected-recovered (SIR) infectious diseases where an individual's infectiousness and probability of recovery depend on his/her “age” of infection. We focus first on early outbreak stages when stochastic effects dominate and show that epidemics tend to happen faster than deterministic calculations predict. If an outbreak is sufficiently large, stochastic effects are negligible and we modify the standard ordinary differential equation (ODE) model to accommodate age-of-infection effects. We avoid the use of partial differential equations which typically appear in related models. We introduce a “memoryless” ODE system which approximates the true solutions. Finally, we analyze the transition from the stochastic to the deterministic phase.  相似文献   

11.
The nationwide COVID-19 epidemic ended in 2020, a few months after its outbreak in Wuhan, China at the end of 2019. Most COVID-19 cases occurred in Hubei Province, with a few local outbreaks in other provinces of China. A few studies have reported the early SARS-CoV-2 epidemics in several large cities or provinces of China. However, information regarding the early epidemics in small and medium-sized cities, where there are still traditionally large families and community culture is more strongly maintained and thus, transmission profiles may differ, is limited. In this study, we characterized 60 newly sequenced SARS-CoV-2 genomes from Anyang as a representative of small and medium-sized Chinese cities, compared them with more than 400 reference genomes from the early outbreak, and studied the SARS-CoV-2 transmission profiles. Genomic epidemiology revealed multiple SARS-CoV-2 introductions in Anyang and a large-scale expansion of the epidemic because of the large family size. Moreover, our study revealed two transmission patterns in a single outbreak, which were attributed to different social activities. We observed the complete dynamic process of single-nucleotide polymorphism development during community transmission and found that intrahost variant analysis was an effective approach to studying cluster infections. In summary, our study provided new SARS-CoV-2 transmission profiles representative of small and medium-sized Chinese cities as well as information on the evolution of SARS-CoV-2 strains during the early COVID-19 epidemic in China.  相似文献   

12.
Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing and high inoculation dose. However, contrary to expectation, trends observed with sub-optimal exposure timing and lower inoculation dose suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.  相似文献   

13.
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics.  相似文献   

14.
It has often been observed that population heterogeneities can lead to outbreaks of infection being less frequent and less severe than homogeneous population models would suggest. We address this issue by comparing a model incorporating various forms of heterogeneity with a homogenised model matched according to the value of the basic reproduction number $R_0$ . We mainly focus upon heterogeneity in individuals’ infectivity and susceptibility, though with some allowance also for heterogeneous patterns of mixing. The measures of infectious spread we consider are (i) the probability of a major outbreak; (ii) the mean outbreak size; (iii) the mean endemic prevalence level; and (iv) the persistence time. For each measure, we establish conditions under which heterogeneity leads to a reduction in infectious spread. We also demonstrate that if such conditions are not satisfied, the reverse may occur. As well as comparison with a homogeneous population, we investigate comparisons between two heterogeneous populations of differing degrees of heterogeneity. All of our results are derived under the assumption that the susceptible population is sufficiently large.  相似文献   

15.
The relationship between transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the amount of virus present in the proximity of a susceptible host is not understood. Here, we developed a within-host and aerosol mathematical model and used it to determine the relationship between viral kinetics in the upper respiratory track, viral kinetics in the aerosols, and new transmissions in golden hamsters challenged with SARS-CoV-2. We determined that infectious virus shedding early in infection correlates with transmission events, shedding of infectious virus diminishes late in the infection, and high viral RNA levels late in the infection are a poor indicator of transmission. We further showed that viral infectiousness increases in a density dependent manner with viral RNA and that their relative ratio is time-dependent. Such information is useful for designing interventions.  相似文献   

16.
The potential ramifications of the COVID-19 pandemic on the population's mental health are a rising global concern. Both at the individual and community level, the erratic and uncertain COVID-19 outbreak has the prospective to exhibit a detrimental effect on psychological health and aging. At present, various measures are dedicated to the parameters like awareness of epidemiology, clinical aspects, mode of transmission, counteracting the spread of the infection, and public health problems, although this initiative has neglected critical mental health concerns. This study is to investigate the outbreak to study the level of harmful effects on mental health and its crosstalk with aging. Global execution of preventive, control measures and resilience establishment are challenging factors whereas reformed lifestyle such as lockdown, coping with self-isolation, quarantine, social distancing, and post-traumatic stress disorders are alarming. Hallmarks of aging which interact with each other, have been suggested to affect the healthspan in aged adults, possibly due to attenuated immunity. Among various hallmarks, we concentrated on those that show direct or indirect interaction with viral infections, comprising inflammation, genomic instability, impaired mitochondrial function, epigenetic modification, telomere attrition, and damaged autophagy. These hallmarks possibly contribute to the elicited pathophysiological responses to SARS-CoV-2 and may add an additive risk of accelerated aging post-recovery among aged adults. Here, the role of antiaging drug candidates that require main consideration in COVID-19 research is discussed briefly. In the later future, it can emerge as a potential therapeutic approach in the treatment of patients with severe infection.  相似文献   

17.
We assess how presymptomatic infection affects predictability of infectious disease epidemics. We focus on whether or not a major outbreak (i.e. an epidemic that will go on to infect a large number of individuals) can be predicted reliably soon after initial cases of disease have appeared within a population. For emerging epidemics, significant time and effort is spent recording symptomatic cases. Scientific attention has often focused on improving statistical methodologies to estimate disease transmission parameters from these data. Here we show that, even if symptomatic cases are recorded perfectly, and disease spread parameters are estimated exactly, it is impossible to estimate the probability of a major outbreak without ambiguity. Our results therefore provide an upper bound on the accuracy of forecasts of major outbreaks that are constructed using data on symptomatic cases alone. Accurate prediction of whether or not an epidemic will occur requires records of symptomatic individuals to be supplemented with data concerning the true infection status of apparently uninfected individuals. To forecast likely future behavior in the earliest stages of an emerging outbreak, it is therefore vital to develop and deploy accurate diagnostic tests that can determine whether asymptomatic individuals are actually uninfected, or instead are infected but just do not yet show detectable symptoms.  相似文献   

18.
Dear Editor, The ongoing coronavirus disease 2019(COVID-19)global pandemic is caused by a novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which instigates severe and often fatal symptoms.As of September 4th,2020,more than 26 million cases of COVID-19 and almost 900,000 deaths have been reported to WHO.Based on Kissler and colleagues'modeled projections of future viral transmission scenarios,a resurgence in SARS-CoV-2 could occur over the next five years(Kissler et al.,2020).Research and clinical trials are underway to develop vacci-nes and treatments for COVID-19,but there are currently no specific vaccines or treatments for COVID-19(www.who.int),and therapeutic and prophylactic interventions are urgently needed to combat the outbreak of SARS-CoV-2.Of partic-ular importance is the identification of drugs which are effective,less-intrusive,most socioeconomic,and ready-to-use.  相似文献   

19.
Finding medications or vaccines that may decrease the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could potentially reduce transmission in the broader population. We developed a computational model of the U.S. simulating the spread of SARS-CoV-2 and the potential clinical and economic impact of reducing the infectious period duration. Simulation experiments found that reducing the average infectious period duration could avert a median of 442,852 [treating 25% of symptomatic cases, reducing by 0.5 days, reproductive number (R0) 3.5, and starting treatment when 15% of the population has been exposed] to 44.4 million SARS-CoV-2 cases (treating 75% of all infected cases, reducing by 3.5 days, R0 2.0). With R0 2.5, reducing the average infectious period duration by 0.5 days for 25% of symptomatic cases averted 1.4 million cases and 99,398 hospitalizations; increasing to 75% of symptomatic cases averted 2.8 million cases. At $500/person, treating 25% of symptomatic cases saved $209.5 billion (societal perspective). Further reducing the average infectious period duration by 3.5 days averted 7.4 million cases (treating 25% of symptomatic cases). Expanding treatment to 75% of all infected cases, including asymptomatic infections (R0 2.5), averted 35.9 million cases and 4 million hospitalizations, saving $48.8 billion (societal perspective and starting treatment after 5% of the population has been exposed). Our study quantifies the potential effects of reducing the SARS-CoV-2 infectious period duration.  相似文献   

20.
Detailed phylogenetic analyses were performed to characterize an HIV-1 outbreak among injection drug users (IDUs) in Stockholm, Sweden, in 2006. This study investigated the source and dynamics of HIV-1 spread during the outbreak as well as associated demographic and clinical factors. Seventy Swedish IDUs diagnosed during 2004 to 2007 were studied. Demographic, clinical, and laboratory data were collected, and the V3 region of the HIV-1 envelope gene was sequenced to allow detailed phylogenetic analyses. The results showed that the Stockholm outbreak was caused by a CRF01_AE variant imported from Helsinki, Finland, around 2003, which was quiescent until the outbreak started in 2006. Local Swedish subtype B variants continued to spread at a lower rate. The number of new CRF01_AE cases over a rooted phylogenetic tree accurately reflected the transmission dynamics and showed a temporary increase, by a factor of 12, in HIV incidence during the outbreak. Virus levels were similar in CRF01_AE and subtype B infections, arguing against differences in contagiousness. Similarly, there were no major differences in other baseline characteristics. Instead, the outbreak in Stockholm (and Helsinki) was best explained by an introduction of HIV into a standing network of previously uninfected IDUs. The combination of phylogenetics and epidemiological data creates a powerful tool for investigating outbreaks of HIV and other infectious diseases that could improve surveillance and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号