首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphorus (P) is an essential element for plant growth often limiting agroecosystems. To identify genetic determinants of performance under variable phosphate (Pi) supply, we conducted genome-wide association studies on five highly predictive Pi starvation response traits in 200 Arabidopsis (Arabidopsis thaliana) accessions. Pi concentration in Pi-limited organs had the strongest, and primary root length had the weakest genetic component. Of 70 trait-associated candidate genes, 17 responded to Pi withdrawal. The PHOSPHATE TRANSPORTER1 gene cluster on chromosome 5 comprises PHT1;1, PHT1;2, and PHT1;3 with known impact on P status. A second locus featured uncharacterized endomembrane-associated auxin efflux carrier encoding PIN-LIKES7 (PILS7) which was more strongly suppressed in Pi-limited roots of Pi-starvation sensitive accessions. In the Col-0 background, Pi uptake and organ growth were impaired in both Pi-limited pht1;1 and two pils7 T-DNA insertion mutants, while Pi -limited pht1;2 had higher biomass and pht1;3 was indistinguishable from wild-type. Copy number variation at the PHT1 locus with loss of the PHT1;3 gene and smaller scale deletions in PHT1;1 and PHT1;2 predicted to alter both protein structure and function suggest diversification of PHT1 is a key driver for adaptation to P limitation. Haplogroup analysis revealed a phosphorylation site in the protein encoded by the PILS7 allele from stress-sensitive accessions as well as additional auxin-responsive elements in the promoter of the “stress tolerant” allele. The former allele’s inability to complement the pils7-1 mutant in the Col-0 background implies the presence of a kinase signaling loop controlling PILS7 activity in accessions from P-rich environments, while survival in P-poor environments requires fine-tuning of stress-responsive root auxin signaling.

A series of insertion/deletion nucleotide polymorphisms at PHOSPHATE TRANSPORTER1 and PIN-LIKES7 loci confer natural variation in low phosphate tolerance in 200 Arabidopsis accessions.  相似文献   

3.
MicroRNA399-mediated regulation of the ubiquitin-conjugating enzyme UBC24/PHOSPHATE2 (PHO2) is crucial for Pi acquisition and translocation in plants. Because of a potential role for PHO2 in protein degradation and its association with membranes, an iTRAQ (for isobaric tags for relative and absolute quantitation)- based quantitative membrane proteomic method was employed to search for components downstream of PHO2. A total of 7491 proteins were identified from Arabidopsis thaliana roots by mass spectrometry, 35.2% of which were predicted to contain at least one transmembrane helix. Among the quantifiable proteins, five were significantly differentially expressed between the wild type and pho2 mutant under two growth conditions. Using immunoblot analysis, we validated the upregulation of several members in PHOSPHATE TRANSPORTER1 (PHT1) family and PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1) in pho2 and demonstrated that PHO2 mediates the degradation of PHT1 proteins. Genetic evidence that loss of PHF1 or PHT1;1 alleviated Pi toxicity in pho2 further suggests that they play roles as downstream components of PHO2. Moreover, we showed that PHO2 interacts with PHT1s in the postendoplasmic reticulum compartments and mediates the ubiquitination of endomembrane-localized PHT1;1. This study not only uncovers a mechanism by which PHO2 modulates Pi acquisition by regulating the abundance of PHT1s in the secretory pathway destined for plasma membranes, but also provides a database of the membrane proteome that will be widely applicable in root biology research.  相似文献   

4.
5.
6.
7.
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.  相似文献   

8.
9.
《Genomics》2020,112(6):4690-4700
Time-dependent darkening and discoloration of wheat product caused by high polyphenol oxidase enzymes (PPO) activity is the most undesirable character in wheat processing industry. We performed GWAS of PPO activity in wheat grains utilizing an association panel and identified 22 significant SNPs. The most significant GWAS peak on chromosome 2A was verified by QTL analysis of PPO activity. The candidate gene for this GWAS peak was identified as TaPPO2A-1, which was the highest expressed PPO gene in wheat grains. The expression level of TaPPO2A-1 was significantly correlated with PPO activity. The most significant association signal for GWAS of the expression values of TaPPO2A-1 pinpointed to the genomic region containing TaPPO2A-1. The results suggested that cis regulation of TaPPO2A-1 expression is the key factor in regulation of PPO activity in wheat grains. The conclusion was further enhanced by haplotype analysis of seven SNPs in the promoter of TaPPO2A-1.  相似文献   

10.
11.
12.
Versaw WK  Harrison MJ 《The Plant cell》2002,14(8):1751-1766
The uptake and distribution of Pi in plants requires multiple Pi transport systems that must function in concert to maintain homeostasis throughout growth and development. The Pi transporter PHT2;1 of Arabidopsis shares similarity with members of the Pi transporter family, which includes Na(+)/Pi symporters of fungal and animal origin and H(+)/Pi symporters of bacterial origin. Sequence comparisons between proteins of this family revealed that plant members possess extended N termini, which share features with chloroplast transit peptides. Localization of a PHT2;1-green fluorescent protein fusion protein indicates that it is present in the chloroplast envelope. A Pi transport function for PHT2;1 was confirmed in yeast using a truncated version of the protein lacking its transit peptide, which allowed targeting to the plasma membrane. To assess the in vivo role of PHT2;1 in phosphorus metabolism, we identified a null mutant, pht2;1-1. Analysis of the mutant reveals that PHT2;1 activity affects Pi allocation within the plant and modulates Pi-starvation responses, including the expression of Pi-starvation response genes and the translocation of Pi within leaves.  相似文献   

13.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

14.
15.
16.
17.
18.
19.
Wang Y  Secco D  Poirier Y 《Plant physiology》2008,146(2):646-656
PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.  相似文献   

20.
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.

Two members of the PHO1 family in Medicago truncatula are involved in the transport of phosphate from the infected nodule cells to the Sinorhizobium meliloti bacteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号