首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Objective:To explore the effects and mechanism of miR-21 on the osteogenic/adipogenic differentiation of mouse BMSCs.Methods:The bilateral ovaries of C57BL/6J mice (n=24) were removed to construct an osteoporosis model. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-21, osteogenic/adipogenic genes, and PTEN. ALP and ARS and ORO staining were used to detect the formation of calcium nodules and lipid droplets in BMSCs. Western blot was used to detect the expression of PTEN.Results:miR-21 was significantly down-regulated in osteoporotic mice. The expression of miR-21 was significantly up-regulated after the osteogenic induction of BMSCs, and the expression of miR-21 was significantly down-regulated after the adipogenic induction. Overexpression of miR-21 significantly promoted the osteogenic differentiation of BMSCs and inhibits the adipogenic differentiation of BMSCs.Conclusion:MiR-21 can promote osteogenic differentiation of BMSCs and inhibit their adipogenic differentiation by negatively regulating PTEN.  相似文献   

3.
4.
Recent evidence indicates that the abnormal differentiation of bone marrow‐derived mesenchymal stem cells (BMSCs) plays a pivotal role in the pathogenesis of osteoporosis. LncRNA SNHG1 has been found to be associated with the differentiation ability of BMSCs. In this study, we aimed to elucidate the role of lncRNA SNHG1 and its associated pathway on the differentiation of BMSCs in osteoporosis. Mice that underwent bilateral ovariectomy (OVX) were used as models of osteoporosis. Induced osteogenic or adipogenic differentiation was performed in mouse BMSCs. Compared to sham animals, lncRNA SNHG1 expression was upregulated in OVX mice. Also, the in vitro expression of SNHG1 was increased in adipogenic BMSCs but decreased in osteogenic BMSCs. Moreover, overexpression of SNHG1 enhanced the adipogenic capacity of BMSCs but inhibited their osteogenic capacity as determined by oil red O, alizarin red, and alkaline phosphatase staining, while silencing of SNHG1 led to the opposite results. LncRNA SNHG1 interacting with the RNA‐binding polypyrimidine tract‐binding protein 1 (PTBP1) promoted osteoprotegerin (Opg) methylation and suppressed Opg expression via mediating DNA methyltransferase (DNMT) 1. Furthermore, Opg was showed to regulate BMSC differentiation. Knockdown of SNHG1 decreased the expressions of adipogenic related genes but increased that of osteogenic related genes. However, the knockdown of Opg partially reversed those effects. In summary, lncRNA SNHG1 upregulated the expression of DNMT1 via interacting with PTBP1, resulting in Opg hypermethylation and decreased Opg expression, which in turn enhanced BMSC adipogenic differentiation and contributed to osteoporosis.  相似文献   

5.
BackgroundSome microRNAs (miRNAs) are involved in osteogenic differentiation. In recent years, increasing evidences have revealed that exosomes contain specific miRNAs. However, the effect and mechanism of miR-23a-5p-containing exosomes in osteoblast remain largely unclear.MethodsWe extracted exosomes from RANKL-induced RAW 264.7 cells, and identified exosomes via transmission electron microscopy, western blot and flow cytometry analysis. In addition, exosome secretion was inhibited by GW4869 and Rab27a siRNAs. miR-23a-5p expression was analyzed by qRT-PCR, and the related protein levels were examined by western blot assay. Furthermore, the number and distribution of osteoclasts were detected by TRAP staining, and early osteogenesis was evaluated by ALP staining. Combination of YAP1 and Runx2 was verified by Co-IP assay, and the regulation of miR-23a-5p and Runx2 was measured by dual luciferase reporter assay.ResultsWe successfully extracted exosomes from RANKL-induced RAW 264.7 cells, and successfully verified exosomes morphology. We also indicated that miR-23a-5p was highly expressed in exosomes from RANKL-induced RAW 264.7 cells, and osteoclast-derived miR-23a-5p-containing exosomes inhibited osteoblast activity, while its inhibition weakened osteoclasts. In mechanism, we demonstrated that Runx2 was a target gene of miR-23a-5p, YAP interacted with Runx2, and YAP or Runx2 inhibited MT1DP expression. In addition, we proved that knockdown of MT1DP facilitated osteogenic differentiation by regulating FoxA1 and Runx2.ConclusionsWe demonstrated that osteoclast-derived miR-23a-5p-containing exosomes could efficiently suppress osteogenic differentiation by inhibiting Runx2 and promoting YAP1-mediated MT1DP. Therefore, we suggested miR-23a-5p in exosomes might provide a novel mechanism for osteoblast function.  相似文献   

6.
BackgroundUnderstanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.MethodsMC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.ResultsmiR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.ConclusionOur study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.  相似文献   

7.
Myocardial fibrosis (MF) is one of the basic causes of many cardiovascular diseases. Noncoding RNAs (ncRNAs), including microRNA (miRNA) and long noncoding RNA (lncRNA), have been reported to play an indispensable role in MF. The current work is focused on investigating the biological role of lncRNA taurine upregulation gene 1 (TUG1) in activating cardiac myofibroblasts as well as the underlying mechanism. The outcome revealed that after myocardial infarction TUG1 expression increased and miR-133b expression decreased in the rat model of MF. The expression level of TUG1 increased following AngII treatment in cardiac myofibroblast. TUG1 knockdown inhibited the Ang-II induced cardiac myofibroblast activation and TUG1 overexpression increased proliferation and collagen generation of cardiac myofibroblasts. Bioinformatic prediction programs predicted that TUG1 had MRE directly combined with miR-133b seed sequence, luciferase activity, and RIP experiments indicated that TUG1, acted as a sponger and interacted with miR-133b in cardiac myofibroblasts. Furthermore, a target of miR-133b was CTGF and CTGF knockdown counteracted the promotion of MF by miR-133b knockdown. Collectively, our study suggested that TUG1 mediates CTGF expression by sponging miR-133b in the activation of cardiac myofibroblasts. The current work reveals a unique role of the TUG1/miR-133b/CTGF axis in MF, thus suggesting its immense therapeutic potential in the treatment of cardiac diseases.  相似文献   

8.
Adipose-derived stem cells (ADSCs) have emerged as a cell source for regeneration medicine. ADSCs possess the capacity to differentiate into endothelial cells and serve an essential role in vascular development and function. LncRNA taurine upregulated gene 1 (TUG1) has recently been linked with angiogenesis in hepatoblastoma. However, the roles of TUG1 in endothelial differentiation of ADSCs remain unidentified. Human adipose-derived stem cells (hADSCs) were obtained and characterized by flow cytometry, Oil red O and Alizarin Red staining. HADSCs were maintained in the endothelial differentiation medium and the expressions of TUG1, miR-143, and FGF1 were examined by qRT-PCR. To assess endothelial differentiation, the expressions of CD31, von Willebrand factor (vWF), VE-cadherin were examined by Western blot analysis, qRT-PCR, and immunofluorescence. Tube formation in Matrigel was examined. The interactions between TUG1 and miR-143, miR-143 and FGF1 were validated by luciferase assays. During the endothelial differentiation process, TUG1 and FGF1 were upregulated, whereas miR-143 was downregulated. TUG1 overexpression downregulated miR-143, upregulated FGF1, CD31, vWF, and VE-cadherin, and enhanced capillary tube formation. Luciferase assays showed that TUG1 interacted with miR-143, and FGF1 was a direct target of miR-143. Furthermore, the enhancement of endothelial differentiation induced by TUG1 overexpression was abolished by miR-143 overexpression. Our findings implicated that lncRNA TUG1 promoted endothelial differentiation of ADSCs by regulating the miR-143/FGF1 axis.  相似文献   

9.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

10.
摘要 目的:为了探究长非编码RNA SNAI3-AS1(LncRNA SNAI3-AS1,即SNAI3-AS1)在骨性关节炎(osteoarthritis,OA)进展中的作用与机制。方法:通过全转录组测序筛选出在OA中差异表达的lncRNA SNAI3-AS1,并通过实时荧光定量PCR(qRT-PCR)检测SNAI3-AS1在软骨细胞退变模型中的表达情况。在软骨细胞C28/I2中分别转染SNAI3-AS1特异性siRNA或真核过表达质粒,分别敲低或过表达SNAI3-AS1,通过MTT、平板克隆形成和EdU掺入实验检测细胞增殖活力,Western Blot检测炎症和细胞外基质蛋白的表达情况。通过生物信息学网站预测SNAI3-AS1相互作用的miRNA和下游靶基因,并通过双荧光素酶报告基因和RIP实验进行验证。结果:相较于正常软骨细胞, SNAI3-AS1的表达水平在OA中显著下调。敲低正常软骨细胞中SNAI3-AS1的表达后,软骨细胞的增殖能力减弱并促进了软骨细胞的退变,而在OA模型的软骨细胞中过表达SNAI3-AS1后,软骨细胞的增殖活力加强并抑制了软骨细胞的退变。在机制上,SNAI3-AS1可充当竞争性内源性RNA(ceRNA),经海绵吸附miR-2278间接上调PRELP,发挥促进软骨细胞增殖和抑制其退变的作用。结论:LncRNA SNAI3-AS1通过LncRNA SNAI3-AS1/ miR-2278/PRELP轴参与骨性关节炎的发生发展过程。  相似文献   

11.
摘要 目的:本文旨在研究长链非编码RNA XIST-miR137-ATG5的相互作用,同时探讨其调节细胞自噬功能与肠癌细胞5-氟胞嘧啶敏感性的关系。方法:实时聚合酶链反应(real time PCR)检测XIST与miR-137在肠癌细胞中的表达;采用脂质体转染法将si-XIST,miR-137转染入肠癌SW480及HCT116细胞中。采用CCK-8检测瞬时转染si-XIST对肠癌细胞增殖及5-FU敏感性的影响;并利用双荧光素酶报告实验检测miR-137与XIST, miR-137与ATG5相互关系。Western blot方法检测XIST- miR137- ATG5对细胞自噬的影响。结果:与正常结肠细胞FHC比较, XIST在结肠癌细胞系明显高表达,miR-137在结肠癌细胞系明显低表达。与阴性对照组比较,转染si-XIST后,SW480及HCT116细胞增殖能力明显受到抑制,对F-5U的敏感性增强,且抑制自噬蛋白Beclin-1及LC3II/LC3 I的表达。miR-137可与XIST,ATG5 3''UTR结合,抑制XIST和ATG5的表达及功能。在结肠癌SW480细胞中共转染miR-137 inhibitor或过表达ATG5可逆转XIST沉默引起的5-FU耐药,同时可逆转因XIST沉默引起的自噬蛋白表达的抑制。结论:LncRNA XIST或可通过调控mir137-ATG促进结直肠癌细胞SW480自噬从而提高其对5-FU的耐药,针对其这一机制,可为将来针对结肠癌的靶向治疗提供一定的实验基础。  相似文献   

12.
13.
14.
Sirtuin1 (SIRT1) is a crucial regulator of metabolism and it is implicated in the metabolic pathophysiology of several disorders inclusive of Type 2 diabetes and fatty liver disease (NAFLD). The aim of this study was to investigate the role of miR-141 in hepatic steatosis via regulation of SIRT1/AMP-activated protein kinase (AMPK) pathway in hepatocytes. Liver hepatocellular cells (HepG2) were treated with high concentration of glucose to be subsequently used for the assessment of miR-141 and SIRT1 levels in a model of hepatic steatosis. On the other hand, cells were transfected with miR-141 to investigate its effect on hepatocyte steatosis and viability as well as SIRT1 expression and activity along with AMPK phosphorylation. Targeting of SIRT1 by miR-141 was evaluated by bioinformatics tools and confirmed by luciferase reporter assay. Following the intracellular accumulation of lipids in HepG2 cells, the level of miR-141 was increased while SIRT1 mRNA and protein levels, as well as AMPK phosphorylation, was decreased. Transfection with miR-141 mimic significantly downregulated SIRT1 expression and activity while miR-141 inhibitor had the opposite effects. Additionally, modulation of miR-141 levels significantly influenced AMPK phosphorylation status. The results of luciferase reporter assay verified SIRT1 to be directly targeted by miR-141. miR-141 could effectively suppress SIRT1 and lead to decreased AMPK phosphorylation in HepG2 cells. Thus, miR-141/SIRT1/AMPK signaling pathway may be considered a potential target for the therapeutic management of NAFLD.  相似文献   

15.
16.
17.

Background

Mesenchymal stem (MS) cells are excellent candidates for cell-based therapeutic strategies to regenerate injured tissue. Although human MS cells can be isolated from bone marrow and directed to differentiate by means of an osteogenic pathway, the regulation of cell-fate determination is not well understood. Recent reports identify critical roles for microRNAs (miRNAs), regulators of gene expression either by inhibiting the translation or by stimulating the degradation of target mRNAs.

Methodology/Principal Findings

In this study, we employed a library of miRNA inhibitors to evaluate the role of miRNAs in early osteogenic differentiation of human MS cells. We discovered that miR-148b, -27a and -489 are essential for the regulation of osteogenesis: miR-27a and miR-489 down-regulate while miR-148b up-regulates differentiation. Modulation of these miRNAs induced osteogenesis in the absence of other external differentiation cues and restored osteogenic potential in high passage number human MS cells.

Conclusions/Significance

Overall, we have demonstrated the utility of the functional profiling strategy for unraveling complex miRNA pathways. Our findings indicate that miRNAs regulate early osteogenic differentiation in human MS cells: miR-148b, -27a, and -489 were found to play a critical role in osteogenesis.  相似文献   

18.
Illuminating the mechanisms of odontoblast differentiation of human dental pulp stem cells (hDPSCs) is the key to find therapeutic clues to promote odontogenesis. LncRNAs play a regulatory role in odontoblast differentiation. Here, we identified a novel lncRNA, named lncRNA CALB2. It was up-regulated in odontoblast-differentiated hDPSCs and potentially interacted with miR-30b-3p and RUNX2. Via gain- and loss-of-function approaches, we found lncRNA CALB2 significantly promoted the odontoblast differentiation of hDPSCs. Then, dual luciferase reporter assay and RNA immunoprecipitation assay revealed that both lncRNA CALB2 and RUNX2 mRNA could directly bind to miR-30b-3p via the same binding sites. Interestingly, miR-30b-3p in hDPSCs was down-regulated and RUNX2 was up-regulated during odontoblast differentiation. Moreover, lncRNA CALB2 knockdown significantly reduced the protein level of RUNX2, DSPP and DMP-1, while miR-30b-3p inhibitor rescued the reduction. Furthermore, miR-30b-3p exerted an inhibitory effect on odontoblast differentiation, which could be reversed by lncRNA CALB2. Collectively, these findings indicate that the newly identified lncRNA CALB2 acts as a miR-30b-3p sponge to regulate RUNX2 expression, thus promoting the odontoblast differentiation of hDPSCs. LncRNA CALB2/miR-30b-3p/RUNX2 axis could be a novel therapeutic target for accelerating odontogenesis.  相似文献   

19.
BackgroundOur previous study demonstrated that lncRNA GIHCG is upregulated in renal cell carcinoma (RCC) and that knockdown of lncRNA GIHCG suppresses the proliferation and migration of RCC cells. However, the mechanism of lncRNA GIHCG in RCC needs further exploration.MethodsThe proliferation, cell cycle, migration, and apoptosis of RCC cells were tested using CCK-8, flow cytometry, wound healing and Annexin-V/-FITC/PI flow cytometry assays, respectively. Dual-luciferase reporter and RNA pull-down or RNA immunoprecipitation assays (RIPs) were performed to analyze the interactions among lncRNA GIHCG, miR-499a-5p and XIAP. A tumour xenograft study was conducted to verify the function of lncRNA GIHCG in RCC development in vivo.ResultsKnockdown of lncRNA GIHCG inhibited cell proliferation and migration and induced G0/G1 arrest while promoting apoptosis. Overexpression of lncRNA GIHCG led to the opposite results. LncRNA GIHCG sponged miR-499a-5p and downregulated its expression in RCC cells. MiR-499a-5p overexpression suppressed RCC cell growth. MiR-499a-5p targeted XIAP and inhibited its expression. LncRNA GIHCG knockdown reduced the growth of tumour xenografts in vivo and the expression of XIAP while increasing miR-499a-5p levels.ConclusionLncRNA GIHCG accelerated the development of RCC by targeting miR-499a-5p and increasing XIAP levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号