首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development—an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography‐tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular‐level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low‐density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB‐like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.  相似文献   

3.
4.
Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each.  相似文献   

5.
 We describe an evolutionary comparison of expression of the actin gene families of two congeneric sea urchins. Heliocidaris tuberculata develops indirectly via a planktonic feeding pluteus that forms a juvenile rudiment after a long period of larval development. H. erythrogramma is a direct developer that initiates formation of a juvenile rudiment immediately following gastrulation. The developmental expression of each actin isoform of both species was determined by in situ hybridization. The observed expression patterns are compared with known expression patterns in a related indirect-developing sea urchin, Strongylocentrotus purpuratus. Comparisons reveal unexpected patterns of conserved and divergent expression. Cytoplasmic actin, CyIII, is expressed in the aboral ectoderm cells of the indirect developers, but is an unexpressed pseudogene in H. erythrogramma, which lacks aboral ectoderm. This change is correlated with developmental mode. Two CyII actins are expressed in S. purpuratus, and one in H. erythrogramma, but no CyII is expressed in H. tuberculata despite its great developmental similarity to S. purpuratus. CyI expression differs slightly between Heliocidaris and Strongylocentrotus with more ectodermal expression in Heliocidaris. Evolutionary changes in actin gene expression reflect both evolution of developmental mode as well as a surprising flexibility in gene expression within a developmental mode. Received: 27 July 1997 / Accepted: 30 December 1997  相似文献   

6.
This study documents evolutionary modifications in mechanisms of gastrulation in Heliocidaris erythrogramma, an echinoid with lecithotrophic larvae. Radially symmetrical cell rearrangements and changes in cell shape drive elongation of the archenteron in the ancestral mode of echinoid gastrulation. Cell marking experiments indicate that in H. erythrogramma, however, prolonged movement of cells over the ventral lip of the blastopore accompanies extension of the archenteron. Evolutionary modifications to archenteron extension in H. erythrogramma thus include utilization of a different type of cellular movement as well as the imposition of dorsoventral asymmetry in cellular movements. The conservation of gastrulation mechanisms among phylogenetically divergent echinoids with planktotrophic development suggests that the plesiomorphic condition has persisted at least 250 million years and perhaps much longer. Yet H. erythrogramma diverged from an ancestor with planktotrophic development only about 10 mya, indicating that morphogenetic mechanisms of early development can undergo substantial evolutionary changes, even after long periods of stasis.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Hybridisations between related species with divergent ontogenies can provide insights into the bases for evolutionary change in development. One example of such hybridisations involves sea urchin species that exhibit either standard larval (pluteal) stages or those that develop directly from embryo to adult without an intervening feeding larval stage. In such crosses, pluteal features were found to be restored in fertilisations of the eggs of some direct developing sea urchins (Heliocidaris erythrogramma) with the sperm of closely (Heliocidaris tuberculata) and distantly (Pseudoboletia maculata) related species with feeding larvae. Such results can be argued to support the punctuated equilibrium model—conservation in pluteal regulatory systems and a comparatively rapid switch to direct development in evolution. 1 , 1 Generation of hybrids between distantly related direct developers may, however, indicate evolutionary convergence. The ‘rescue’ of pluteal features by paternal genomes may require maternal factors from H. erythrogramma because the larva of this species has pluteal features. In contrast, pluteal features were not restored in hybridisations with the eggs of Holopneustes purpurescens, which lacks pluteal features. How much of pluteal development can be lost before it cannot be rescued in such crosses? The answer awaits hybridisations among indirect and direct developing sea urchins differing in developmental phenotype, in parallel with investigations of the genetic programs involved. BioEssays 26:343–347, 2004. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
15.
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.  相似文献   

16.
17.
18.
Biological differences between cell types and developmental processes are characterised by differences in gene expression profiles. Gene-distal enhancers are key components of the regulatory networks that specify the tissue-specific expression patterns driving embryonic development and cell fate decisions, and variations in their sequences are a major contributor to genetic disease and disease susceptibility. Despite advances in the methods for discovery of putative cis-regulatory sequences, characterisation of their spatio-temporal enhancer activities in a mammalian model system remains a major bottle-neck. We employed a strategy that combines gnathostome sequence conservation with transgenic mouse and zebrafish reporter assays to survey the genomic locus of the developmental control gene PAX6 for the presence of novel cis-regulatory elements. Sequence comparison between human and the cartilaginous elephant shark (Callorhinchus milii) revealed several ancient gnathostome conserved non-coding elements (agCNEs) dispersed widely throughout the PAX6 locus, extending the range of the known PAX6 cis-regulatory landscape to contain the full upstream PAX6-RCN1 intergenic region. Our data indicates that ancient conserved regulatory sequences can be tested effectively in transgenic zebrafish even when not conserved in zebrafish themselves. The strategy also allows efficient dissection of compound regulatory regions previously assessed in transgenic mice. Remarkable overlap in expression patterns driven by sets of agCNEs indicates that PAX6 resides in a landscape of multiple tissue-specific regulatory archipelagos.  相似文献   

19.
Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns.  相似文献   

20.
Indirect development via a feeding pluteus larva represents the ancestral mode of sea urchin development. However, some sea urchin species exhibit a derived form of development, called direct development, in which features of the feeding larva are replaced by accelerated development of the adult. A major difference between these two developmental modes is the timing of the formation of the left coelom and initiation of adult development. These processes occur much earlier in developmental and absolute time in direct developers and may be underlain by changes in morphogenetic processes. In this study, we explore whether differences in the cellular mechanisms responsible for the development of the left coelom and adult structures are associated with the change in the timing of their formation in the direct-developing sea urchin Heliocidaris erythrogramma. We present evidence that left coelom formation in H. erythrogramma, which differs in major aspects of coelom formation in indirect developers, is not a result of cell division. Further, we demonstrate that subsequent development of adult structures requires cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号