首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To monitor variations in the bacterial community and fermentation products of maize silage within and between bunker silos. Methods and Results: Silage samples were collected in 2008 and 2009 from three dairy farms, wherein the farmers arranged for a contractor to produce maize silage using bunker silos. Silage was prepared using a lactic acid bacteria (LAB) inoculant consisting of Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Eight samples were collected from each bunker silo; 4 ‘outer’ and 4 ‘inner’ samples were collected from near the top and the bottom of the silo. The dry matter, lactic acid, acetic acid, ethanol, 1‐propanol and 1,2‐propanediol contents differed between bunker silos in both sampling years. Higher acetic acid, 1‐propanol and 1,2‐propanediol contents were found in the bottom than the top layers in the 2008 samples, and higher lactic acid content was found in the top than the bottom layers in the 2009 samples. The bacterial community varied more between bunker silos than within a bunker silo in the 2008 samples, whereas differences between the top and the bottom layers were seen across bunker silos in the 2009 samples. The inoculated LAB were uniformly distributed, while several nonconventional silage bacteria were also detected. Lactobacillus acetotolerans, Lactobacillus panis and Acetobacter pasteurianus were detected in both years. Stenotrophomonas maltophilia was detected in the 2008 samples, and Lactobacillus reuteri, Acinetobacter sp. and Rahnella sp. were detected in the 2009 samples. Conclusions: Although differences were seen within and between bunker silos, the bacterial community may indicate a different relationship between bunker silos and sampling locations within a bunker silo from that indicated by the fermentation products. Significance and Impact of the Study: Analysis of bacterial community can help understand how diverse non‐LAB and LAB species are involved in the ensiling process of bunker‐made maize silage.  相似文献   

2.
Aims: To characterize the bacterial communities in commercial total mixed ration (TMR) silage, which is known to have a long bunk life after silo opening. Methods and Results: Samples were collected from four factories that produce TMR silage according to their own recipes. Three factories were sampled three times at 1‐month intervals during the summer to characterize the differences between factories; one factory was sampled 12 times, three samples each during the summer, autumn, winter and spring, to determine seasonal changes. Bacterial communities were determined by culture‐independent denaturing gradient gel electrophoresis. All silages contained lactic acid as the predominant acid, and the contents appeared stable regardless of factories and product seasons. Acetic acid and 1‐propanol contents were different between factories and indicated seasonal changes, with increases in warm seasons compared to cool seasons. Both differences and similarities existed among the bacterial communities from each factory and product season. Lactobacillus parabuchneri was found in the products from three of four factories. Various sourdough lactic acid bacteria (LAB) were identified in commercial TMR silage; Lactobacillus panis, Lactobacillus hammesii, Lactobacillus mindensis, Lactobacillus pontis, Lactobacillus frumenti and Lactobacillus farciminis were detected in many products. Moreover, changes owing to product season were distinctive, and Lact. pontis and Lact. frumenti became detectable in summer products. Conclusion: Sourdough LAB are involved in the ensiling of commercial TMR silage. Silage bacterial communities vary more by season than by factory. The LAB species Lact. parabuchneri was detected in the TMR silage but may not be essential to the product’s long bunk life after silo opening. Significance and Impact of the Study: Commercial TMR silage resembles sourdough with respect to bacterial communities and long shelf life. The roles of sourdough LAB in the ensiling process and aerobic stability are worth examining.  相似文献   

3.
Aims: To determine the survival rate of silage lactic acid bacteria (LAB) in the ruminant gastrointestinal tract. Methods and Results: Wilted Italian ryegrass (Lolium multiflorum Lam.) silage (containing 1·9 × 106 CFU LAB g?1) was fed ad libitum to three goats equipped with rumen cannulae. Silage was given alone or with concentrates at a 1 : 1 ratio on a dry matter basis. Rumen fluid was then obtained 2, 4 and 8 h after the morning feeding. Denaturing gradient gel electrophoresis was performed to compare LAB communities in silage, rumen fluid and faeces. The LAB detected in the wilted silage included Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus murinus and Lactobacillus sakei. Bands indicative of Lact. murinus were detected in either the rumen fluid or faeces, whereas the bands indicative of Lact. plantarum, Lact. brevis and Lact. sakei were not. Although the rumen fluid LAB counts and volatile fatty acid concentrations were higher in goats fed silage plus concentrates compared with those fed silage alone, the LAB communities themselves remained unaffected. Sampling times and goat‐to‐goat variations did not affect the LAB communities found in the rumen fluid. Conclusion: LAB communities found in the gut are not remarkably affected by the consumption of silage LAB, even when the silage is accompanied by concentrates that facilitate gut fermentation. Significance and Impact of the Study: Although silage can improve probiotic function, it may be difficult for silage LAB to survive the digestive process in the ruminant gastrointestinal tract.  相似文献   

4.
Real-time polymerase chain reaction (RT-PCR) was used to quantify seven species of lactic acid bacteria (LAB) in alfalfa silage prepared in the presence or absence of four commercial inoculants and in uninoculated corn stover harvested and stored under a variety of field conditions. Species-specific PCR primers were designed based on recA gene sequences. Commercial inoculants improved the quality of alfalfa silage, but species corresponding to those in the inoculants displayed variations in persistence over the next 96 h. Lactobacillus brevis was the most abundant LAB (12 to 32% of total sample DNA) in all of the alfalfa silages by 96 h. Modest populations (up to 10%) of Lactobacillus plantarum were also observed in inoculated silages. Pediococcus pentosaceus populations increased over time but did not exceed 2% of the total. Small populations (0.1 to 1%) of Lactobacillus buchneri and Lactococcus lactis were observed in all silages, while Lactobacillus pentosus and Enterococcus faecium were near or below detection limits. Corn stover generally displayed higher populations of L. plantarum and L. brevis and lower populations of other LAB species. The data illustrate the utility of RT-PCR for quantifying individual species of LAB in conserved forages prepared under a wide variety of conditions.Disclaimer: Mention of products is for informational purposes only and does not imply a recommendation or warranty by USDA over other products that may also be suitable  相似文献   

5.
This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.  相似文献   

6.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

7.
Lactobacillus spp. from an inoculant and Weissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion of d-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 and L. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.Silage is now the most common preserved cattle feed in many countries, including Japan. It is well established that lactic acid bacteria (LAB) play an important role in silage fermentation. Epiphytic microflora, the microorganisms naturally present on forage crops, are responsible for silage fermentation and also influence silage quality (3, 11, 15). Lactobacilli and lactic acid-producing cocci, e.g., leuconostocs, lactococci, streptococci, pediococci, and Weissella species, are major components of the microbial flora in various types of forage crops (3). Stirling and Whittenbury (21) reported that leuconostocs were the most numerous and widely distributed on forages and that lactobacilli occurred mostly on grasses. Cai et al. (3) examined a large number of forage crops and grasses and also found that the predominant LAB were lactic acid-producing cocci and that lactobacilli were the least numerous and mostly homofermentative. Ruser (17) found that although all LAB groups were present in chopped-maize samples, homofermentative lactobacilli and heterofermentative leuconostocs were present in the highest numbers.In order to improve silage quality, many LAB-containing biological additives have been developed and are currently available (13, 20, 25). These inoculants may inhibit the growth of harmful bacteria and enhance lactic acid fermentation during ensiling periods. The epiphytic LAB influence the effectiveness of silage inoculants because the introduced bacteria must compete with these LAB (12). Therefore, the LAB species and their characteristics in the silage environment require further study. However, while an increasing number of studies have reported positive benefits from using some bacterial inoculants as silage additives, relatively few have reported the effect of epiphytic LAB, especially Leuconostoc and Weissella species, on silage fermentation. In the present study, the characterization of Leuconostoc and Weissella species isolated from forage crops and their influence on silage fermentation were examined.  相似文献   

8.
Aims: To understand the effects of lactic acid bacteria (LAB) inoculation on fermentation products, aerobic stability and microbial communities of silage. Methods and Results: Wilted Italian ryegrass was stored in laboratory silos with and without inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri. The silos were opened after 14, 56 and 120 days and then subjected to aerobic deterioration for 7 days. Intensive alcoholic fermentation was found in untreated silage; the sum of ethanol and 2,3‐butanediol content at day 14 was about 7 times higher than that of lactic and volatile fatty acids. Alcoholic fermentation was suppressed by L. rhamnosus and L. buchneri inoculation and lactic acid and acetic acid became the dominant fermentation products, respectively. Silages were deteriorated in untreated and L. rhamnosus‐inoculated silages, whereas no spoilage was found in L. buchneri‐inoculated silage. Enterobacteria such as Erwinia persicina, Pantoea agglomerans and Rahnella aquatilis were detected in untreated silage, whereas some of these bacteria disappeared or became faint with L. rhamnosus treatment. When silage was deteriorated, Lactobacillus brevis and Bacillus pumilus were observed in untreated and L. rhamnosus‐inoculated communities, respectively. The inoculated LAB species was detectable in addition to untreated bacterial communities. Saccharomyces cerevisiae and Pichia anomala were the main fungi in untreated and L. rhamnosus‐inoculated silages; however, P. anomala was not visibly seen in L. buchneri‐inoculated silage either at silo opening or after exposure to air. Conclusion: Inoculation with L. rhamnosus can suppress alcoholic fermentation of wilted grass silage with elimination of enterobacteria at the beginning of fermentation. Addition of L. buchneri may improve aerobic stability, with distinct inhibitory effect observed on P. anomala after silo opening. Significance and Impact of the Study: Bacterial and fungal community analyses help us to understand how inoculated LAB can function to improve the fermentation and aerobic stability of silage.  相似文献   

9.
Silages are important feedstuffs. Homofermentative lactic acid bacterial inoculants are often used to control silage fermentation. However, some research pointed out those homofermentative lactic acid bacteria (LAB) impaired the aerobic stability of wheat, sorghum, and corn silages. Adding heterofermentative LAB can produce more acetic acid, thereby stabilizing silages during aerobic exposure. Alfalfa is difficult to ensile. The present work was to study the effects of L. buchneri (heterofermentative LAB), alone or in combination with L. plantarum (homofermentative LAB) on the fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. After 90 days ensiling, the pH, NH3-N/TN, butyric acid content and molds counts of control were the highest. The inoculated silages had more lactic acid, acetic acid content and more lactic acid bacteria than the control. Inoculating LAB inhibited harmful microorganisms, such as Enterobacterium and Klebsiella pneumoniae. The L. buchneri L. plantarum-inoculated silage had more acetic acid and less yeasts than other three treatments (P < 0.05), and lower NH3-N/TN than control (< 0.05). The CO2 production of L. buchneri L. plantarum-inoculated silage was less than that of L. plantarum-inoculated silage (P < 0.05). Inoculating LAB in alfalfa silages can decrease pH, increase the production of lactic and acetic acids, reduce the number of yeasts and molds, and inhibit Enterobacterium and K. pneumoniae. Inoculating with L. buchneri or L. buchneri L. plantarum can improve aerobic stability of alfalfa silages. A combination of L. buchneri and L. plantarum is preferable because it enhanced alfalfa silage quality and aerobic stability.  相似文献   

10.
The screening of three strains of lactic acid bacteria identified as Lactobacillus rhamnosus, Lactobacillus reuteri, and Lactobacillus helveticus showed significant antagonistic activity against Klebsiella pneumoniae strains characterized by multiple antibiotic resistance. Lactobacilli cocultivated with the Klebsiella strains inhibited their growth 20 to 86% on the first and second days, respectively. Exoproteome analysis of L. rhamnosus cocultivated with K. pneumoniae revealed the induction of peptidoglycan hydrolases, including extracellular lytic transglycosylases, family II (MltA), and endopeptidases capable of disrupting the peptidoglycan bacterial cell wall.  相似文献   

11.
As silage is one of the most important feed sources for dairy cattle it is recommended for farmers to preserve silage by fermentation. Interaction of the five strains of Lactobacillus genera [Lactobacillus buchneri A KKP 2047 p (LB), L. reuteri M KKP 2048 p (LR), L. plantarum K KKP 593 p (LPk), L. plantarum S KKP 2021 p (LPs), L. fermentum N KKP 2020 p (LF)] has been shown aiming to increase the safety of corn grain silage fodder. Experiments were conducted in polyethylene microsilos for 48 days and on production scale in an experimental farm for 3 years. Synergistic activity of the studied bacterial strains in terms of reducing aflatoxin B1 and ochratoxin A levels was clear in these experimental variants wherein to the inoculants of the LB?+?LR strains subsequent bacterial strains LPk, LPs and LF were sequentially added. Silages inoculated with five bacterial strains were free from pathogens and showed the lowest yeast and mold count values among all experimental variants. As a result of employing the preparation starter culture for ensiling corn grain there were obtained silages characterized by high stability, microbiological and chemical purity, thus safe in feeding livestock.  相似文献   

12.
The objectives of this study were to investigate the adaptation and competition of Lactobacillus plantarum, Pediococcus pentosaceus and Enterococcus faecalis inoculated in alfalfa silage alone or in combination on the fermentation quality, dynamics of bacterial community, and their functional shifts using single-molecule real-time (SMRT) sequencing technology. Before ensiling, alfalfa was inoculated with L. plantarum (Lp), P. pentosaceus (Pp), E. faecalis (Ef) or their combinations (LpPp, LpEf, LpPpEf) and sampled at 1, 3, 7, 14 and 60 days. After 60-days fermentation, the Lp-, Pp- and LpPp-inoculated silages had lower pH but greater concentrations of lactic acid were observed in Pp, LpEf and LpPpEf-inoculated silages. The inoculants altered the keystone taxa and the bacterial community dynamics in different manners, where L. plantarum, Weissella cibaria and L. pentosaceus dominated the bacterial communities after 14 days-fermentation in all treatments. The silages with better fermentation quality had simplified bacterial correlation structures. Moreover, different inoculants dramatically changed the carbohydrate, amino acid, energy, nucleotide and vitamin metabolism of bacterial communities during ensiling. Results of the current study indicate that effect of different inoculants on alfalfa silage fermentation was implemented by modulating the succession of bacterial community, their interactions and metabolic pathways as well during ensiling.  相似文献   

13.
Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥ 6 log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5 h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions.  相似文献   

14.
AIM: Lactic acid bacteria (LAB) strains shown to have broad-spectrum antimicrobial activity were screened for potential as grass silage inoculants. The strains capable of rapidly lowering the pH of the grass matrix and with low proteolytic activity were assessed in laboratory-scale silos in a grass matrix containing natural microbial flora. METHODS AND RESULTS: Screening of nine candidate strains was performed first in a grass extract medium. The four most promising strains were selected on the basis of growth rate in the medium, capacity to reduce pH and ability to limit the formation of ammonia-N. The efficiency of the selected strains was further assessed in a laboratory-scale ensiling experiment. Untreated (no additive) and formic acid served as controls. All tested inoculants improved silage quality compared with untreated. With one exception (Pediococcus parvulus E315) the fermentation losses in the inoculated silages were even lower than in the acid-treated control silage. Pure lactic acid fermentation was obtained in the timothy-meadow fescue silage with all inoculants. The results obtained in the ensiling experiments were consistent with those of the screening procedure, which appeared to predict correctly the potential of LAB as silage inoculants. The strains with a low ammonia production rate in the grass extract medium behaved similarly in the silage. Especially in this respect the strain Lactobacillus plantarum E76 was superior to the other candidates. CONCLUSIONS: The screening method using grass extract proved to be useful in strain selection. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid screening method developed for the LAB strains provides a useful tool for more systematic product development of commercial inoculant preparations. Time consuming and laborious ensiling experiments can be limited only to the most promising strains.  相似文献   

15.
One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality.  相似文献   

16.
Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin.  相似文献   

17.
AIMS: To evaluate the fermentation characteristics and the effects of Lactobacillus buchneri inoculation in ensiling whole crop rice. METHODS AND RESULTS: Laboratory-scale silages were prepared from whole crop rice harvested at yellow-ripe stage. The crop was ensiled for 2 months with and without inoculation of L. buchneri at 10(4), 10(5) and 10(6) CFU g(-1). The effect of prolonged ensiling was also studied by using the same crop; the silos were opened at 1, 3, 6 and 12 months, while the inoculation was made at 10(5) CFU g(-1). Enhanced alcoholic fermentation was found in untreated silage; the sum of ethanol and 2,3-butanediol were seven times higher at 2 months than those of lactic and volatile fatty acids, while the differences were diminished at 12 months owing to the reduction of ethanol in the late ensiling period. Inoculation of L. buchneri inhibited the alcohols; however, ethanol yet prevailed over the fermentation until 6 months, after which acetic acid became the main product in the inoculated silage. Regardless of inoculation and ensiling period, yeasts were not found in whole crop rice silage. CONCLUSIONS: Substantial amounts of ethanol and 2,3-butanediol would be produced in silage prepared from whole crop rice. The alcoholic fermentation can be suppressed when inoculated with L. buchneri. SIGNIFICANCE AND IMPACT OF THE STUDY: Inoculation of L. buchneri could be an option to prevent ethanol fermentation in silage.  相似文献   

18.
Deoxyribonucleic acid hybridization among strains of lactobacilli   总被引:1,自引:0,他引:1  
Hybridization of deoxyribonucleic acid (DNA) from Lactobacillus bulgaricus (ATCC 11842) with DNA of L. lactis (ATCC 12315), L. helveticus (ATCC 15009), and L. jugurt (ATCC 521) showed 86.0% reassociation with L. lactis, 4.8% with L. helveticus, and none with L. jugurt.  相似文献   

19.
A rifampicin-resistant variant of two strains of Lactobacillus plantarum, one strain of Pediococcus acidilactici, and one strain of Enterococcus faecium were used for the experimental production of lucerne silage. Laboratory silage without inoculants served as a control. Counts of total anaerobes, total lactic acid bacteria (LAB), lactobacilli, pediococci, and enterococci were determined on days 14, 21, 30, 49, and 60 of lucerne fermentation. LAB dominated in silage microflora, reaching a percentage between 59 and 95 % of total anaerobes. Lactobacilli were found as a predominant group of LAB during the whole study. Lactobacilli reached numbers 8.74 log CFU/g in treated silage and 8.89 log CFU/g in the control at the first observation. Their counts decreased to 4.23 and 4.92 log CFU/g in treated silage and the control, respectively, on day 63 of fermentation. Similar decreases were observed in all bacterial groups. The treated silage samples possessed lower pH (4.2 vs. 4.5 in control samples) and contained more lactic acid compared to control silage. The identity of re-isolated rifampicin-resistant bacteria with those inoculated to the lucerne was evaluated by fingerprinting techniques. The fingerprint profiles of re-isolated bacteria corresponded to the profiles of strains used for the treatment. It could be concluded that supplemented LAB dominated in laboratory silage and overgrew naturally occurring LAB.  相似文献   

20.
Screening and molecular identification of probiotic lactic acid bacteria (LAB) in effluents generated during the production of ogi, a fermented cereal (maize, millet, and sorghum) were done. LAB were isolated from effluents generated during the first and second fermentation stages in ogi production. Bacterial strains isolated were identified microscopically and phenotypically using standard methods. Probiotic potential properties of the isolated LAB were investigated in terms of their resistance to pH 1.5 and 0.3% bile salt concentration for 4 h. The potential LAB isolates ability to inhibit the growth of pathogenic organisms (Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium) was evaluated in vitro. The pH and LAB count in the effluents ranged from 3.31 to 4.49 and 3.67 to 4.72 log cfu/ml, respectively. A total of 88 LAB isolates were obtained from the effluents and only 10 LAB isolates remained viable at pH 1.5 and 0.3% bile salt. The zones of inhibition of the LAB isolates with probiotic potential ranged from 7.00 to 24.70 mm against test organsisms. Probiotic potential LAB isolates were molecularly identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Enterococcus faecium, Pediococcus acidilactici, Pediococcus pentosaceus, Enterococcus faecalis, and Lactobacillus brevis. Survival and proliferation of LAB isolates at low pH, 0.3% bile salt condition, and their inhibition against some test pathogens showed that these LAB isolates could be a potential probiotics for research and commercial purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号