首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the mechanism for anti-ovulatory effects of blockade of preovulatory synthesis and action of progesterone, we focused on cyclooxygenase (COX)-2 induction and mitotic activity of granulosa cells in gonadotropins-treated rats. Treatment with RU486 (a progesterone receptor antagonist) or trilostane (a 3β-hydroxysteroid dehydrogenase inhibitor) just prior to or 4h after human chorinonic gonadotropin (hCG) (hCG4h) decreased ovulation rates and circulating progesterone level. Human CG induction of immunoreactive COX-2 in the granulosa layer of mature Graafian follicles at hCG8h was reduced by RU486 treatment at hCG0h and trilostane treatment at hCG4h. RU486 treatment further attenuated ovarian prostaglandin E(2) (PGE(2)) level significantly. Cell proliferative activity in mural granulosa layer of the inhibitors-treated follicles was significantly lower than in intact group. Obtained results show that inhibition of synthesis and action of progesterone caused attenuated COX-2/PGE(2) system and dysregulated mitotic response of granulosa cells, resulting in decreased ovulation.  相似文献   

2.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

3.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

4.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

5.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

6.
The small ubiquitin-related modifier-1 (SUMO-1) with broad cellular expression has been implicated in a range of cellular processes, such as cell proliferation, differentiation, and apoptosis. As shown recently, SUMO-1 is expressed and regulated by gonadotropins, in particular an ovulatory hCG stimulus in mouse granulosa cells in vivo. To test the hypothesis that modulation of granulosa cell apoptosis changes SUMO-1 expression during granulosa cell differentiation in the mouse ovary, we demonstrate that progesterone receptor (PR) proteins are absent in pre-ovulatory granulosa cell nuclei, whereas they are expressed in periovulatory granulosa cell nuclei in parallel with decreases in SUMO-1 expression, caspase-3 activation, and DNA fragmentation in vivo. Second, treatment with either PR antagonists or a cell permeable ceramide analog consistently increases SUMO-1 expression in parallel with an increase in apoptosis as well as a decrease in cell proliferation in periovulatory granulosa cells in vitro. However, we do not observe an increase in SUMO-1 expression in pre-ovulatory granulosa cells that have undergone the same treatment. Third, we have also demonstrated, in pre-ovulatory granulosa cells in vitro, neither induction of spontaneous apoptosis nor the protective effect of EGF against spontaneous apoptosis changes SUMO-1 protein expression. Fourth, we show that induction of apoptosis enhances SUMO-1 conjugation in periovulatory granulosa cells in vitro, pointing to the pivotal link between the SUMO-1 conjugation and cell death. Taken together, our observations suggest that SUMO-1 via sumoylation has an important role in the regulation of granulosa cell apoptosis during granulosa cell differentiation in the mouse ovary.  相似文献   

7.

Background

The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation.

Aim

This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration.

Material and Methods

Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture.

Results and Conclusions

VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy.  相似文献   

8.
9.
Progesterone receptor (PR) stimulation promotes survival in human and rat periovulatory granulosa cells. PR antagonists, Org 31710 and RU 486, both increase apoptosis and decrease cholesterol synthesis in these cells. The decrease in cholesterol synthesis also causes decreased synthesis of other products branching from the cholesterol synthesis pathway, including substrates for protein prenylation. In this study we focus on the link between apoptosis and prenylation in human periovulatory granulosa cells. A decreased cholesterol synthesis and increased apoptosis was verified in experiments with human periovulatory granulosa cells treated with the PR antagonists Org 31710 or RU 486 by measuring caspase-3/7 activity and incorporation of 14C-acetate into cholesterol and progesterone. Correspondingly, specific inhibition of cholesterol synthesis in periovulatory human granulosa cells using HMG-CoA reductase inhibitors (lovastatin or simvastatin) increased apoptosis, measured as caspase-3/7 activity. The increase in apoptosis caused by simvastatin or Org 31710 was partially reversed by addition of the protein prenylation precursors farnesol or geranylgeraniol. In addition, the prenylation inhibitors FTI R115777 and GGTI 2147 increased apoptosis in these cells. In conclusion our data suggest that PR antagonists increase apoptosis and reduce cholesterol synthesis in periovulatory granulosa cells and that the resulting depletion of substrates for protein prenylation may contribute to the increased apoptosis sensitivity.  相似文献   

10.
During ovulation, granulosa cells and cumulus cells synthesize and secrete a wide variety of factors including members of the IL cytokine family via the process of exocytosis. Exocytosis is controlled by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex consisting of proteins residing in the vesicle membrane and the plasma membrane. One of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins, synaptosomal-associated protein (SNAP)25, is expressed abundantly in neuronal cells and is also induced transiently in the rat ovary in response to LH. Therefore, we sought to determine the molecular mechanisms controlling ovarian expression of the Snap25 gene, and the role of SNAP25 in exocytosis of secreted factors, such as ILs from cumulus cells and granulosa cells. In preovulatory follicles of equine (e) chorionic gonadotropin (CG)-primed mice, expression of Snap25 mRNA was negligible but was induced markedly 8 h after human (h) CG stimulation. In Pgr null mice Snap25 mRNA and protein levels were significantly lower at 8 h after hCG compared with wild-type mice. To analyze the molecular mechanisms by which progesterone receptor regulates this gene, a 1517-bp murine Snap25 promoter-luciferase reporter construct was generated and transfected into granulosa cell cultures. Three specificity protein (SP)-1/SP-3 sites, but not consensus activator protein 1 or cAMP response element sites, were essential for basal and forskolin/phorbol 12-myristate 13-acetate-induced promoter activity in granulosa cells. The induction was significantly suppressed by PGR antagonist, RU486. Treatment of cumulus oocyte complexes or granulosa cells with FSH/amphiregulin, LH, or forskolin/phorbol 12-myristate 13-acetate-induced elevated expression of Snap25 mRNA and increased the secretion of eight cytokine and chemokine factors. Transfection of granulosa cells with Snap25 small interfering RNA significantly reduced the levels of both SNAP25 protein and the secretion of cytokines. From these results, we conclude that progesterone-progesterone receptor-mediated SNAP25 expression in cumulus oocyte complexes and granulosa cells regulates cytokine and chemokine secretion via an exocytosis system.  相似文献   

11.
The progesterone receptor (PR) plays a critical role during ovulation. Mice lacking the PR gene are anovulatory due to a failure in the rupture of the preovulatory follicles. The pathways that operate downstream of PR to control ovulation are poorly understood. Using gene expression profiling, we identified peroxisome proliferator-activated receptor γ (PPARγ) as a target of regulation by PR in the granulosa cells of the preovulatory follicles during the ovulatory process. To investigate the function of PPARγ during ovulation, we created a conditional knockout mouse in which this gene was deleted via Cre-Lox-mediated excision in granulosa cells. When these mutant mice were subjected to gonadotropin-induced superovulation, the preovulatory follicles failed to rupture and the number of eggs released from the mutant ovaries declined drastically. Gene expression analysis identified endothelin-2, interleukin-6, and cyclic GMP-dependent protein kinase II as novel targets of regulation by PPARγ in the ovary. Our studies also suggested that cycloxygenase 2-derived metabolites of long-chain fatty acids function as endogenous activating ligands of PPARγ in the preovulatory follicles. Collectively, these studies revealed that PPARγ is a key mediator of the biological actions of PR in the granulosa cells and activation of its downstream pathways critically controls ovulation.  相似文献   

12.
The midcycle LH surge stimulates a rise in follicular fluid prostaglandin E2 (PGE2), which is necessary for normal ovulation. To examine PGE2-regulated processes in primate follicles, monkey granulosa cells were cultured with hCG alone or with hCG and PGE2, and the resulting total RNA was subjected to microarray analysis. Twenty PGE2-regulated mRNAs were identified, and we selected a lipid droplet protein, adipose differentiation-related protein (ADRP), for further study. To determine whether hCG and PGE2 regulate ADRP expression in vivo, monkeys received gonadotropins to stimulate multiple follicular development. Human chorionic gonadotropin was then administered alone or with the PG synthesis inhibitor celecoxib, and follicular aspirates or whole ovaries were obtained at times that span the 40-h periovulatory interval. Administration of hCG increased granulosa cell ADRP mRNA and protein, with peak levels measured just before the expected time of ovulation. Treatment with hCG and celecoxib decreased granulosa cell ADRP mRNA levels compared with those of animals treated with hCG only. ADRP was detected by immunocytochemistry in many monkey tissues that synthesize prostaglandins but was not consistently expressed by steroidogenic tissues. Granulosa cells of periovulatory follicles immunostained for ADRP after, but not before, hCG administration; ADRP colocalized with large lipid droplets within the granulosa cell cytoplasm. These studies identify ADRP as a novel gonadotropin- and PGE2-regulated protein in the granulosa cells of primate periovulatory follicles. Because ADRP facilitates arachidonic acid uptake in non-ovarian cells, ADRP-associated lipid droplets may enhance arachidonic acid uptake by granulosa cells to provide a precursor for periovulatory prostaglandin production.  相似文献   

13.
FAM110C belongs to a family of proteins that regulates cell proliferation. In the present study, the spatiotemporal expression pattern of FAM110C and its potential role were examined during the periovulatory period. Immature female rats were injected with equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) and ovaries or granulosa cells were collected at various times after hCG administration (n = 3/time point). Expression levels of Fam110c mRNA and protein were highly induced both in intact ovaries and granulosa cells at 8 to 12 h after hCG treatment. In situ hybridization analysis demonstrated Fam110c mRNA expression was induced in theca and granulosa cells at 4 h after hCG, primarily localized to granulosa cells at 8 h and 12 h, and decreased at 24 h after hCG. There was negligible Fam110c mRNA detected in newly forming corpora lutea. In rat granulosa cell cultures, hCG induced expression of Fam110c mRNA was inhibited by RU486, whereas NS398 and AG1478 had no effect, suggesting that Fam110c expression is regulated in part by the progesterone receptor pathway. Promoter activity analysis revealed that an Sp1 site was important for the induction of Fam110c expression by hCG. Overexpression of FAM110C promoted granulosa cells to arrest at the G(1) phase of the cell cycle but did not change progesterone levels. In summary, hCG induces Fam110c mRNA expression in granulosa cells by activation of an Sp1-binding site and the actions of progesterone. Our findings suggest that FAM110C may control granulosa cell differentiation into luteal cells by arresting cell cycle progression.  相似文献   

14.
15.
Specific rabbit antibodies to the bovine cholesterol side-chain cleavage cytochrome P-450 (P-450scc) were used to cross-react with the enzyme in the rat ovary. The luteal cells of cyclic, pregnant, and pseudopregnant rats were immunostained. P-450scc was also expressed in the interstitial cells of prepubertal and cyclic adult rats, and in the thecal cells lining the preovulatory follicles. In cyclic females, RU 486 and oestradiol increased the intensity of P-450scc immunostaining. The granulosa cells of ovarian follicles whatever their stage of development, including preovulatory follicles, were not labelled, except after ovulation. The intensity of immunostaining of thecal and interstitial cells decreased during early pregnancy or pseudopregnancy, and disappeared after Day 9, whereas these cells were intensely labelled 24 h after parturition. The immunostaining of thecal and interstitial cells was again detected in 18-day pregnant rats, treated with the antiprogesterone RU 486. It is therefore concluded that both oestradiol and progesterone are involved in P-450scc regulation.  相似文献   

16.
17.
The cadherins and their cytoplasmic counterparts, the catenins, form the adherens junctions, which are of importance for tissue integrity and barrier functions. The development and maturation of the ovarian follicle is characterized by structural changes, which require altered expression or function of the components involved in cell-cell contacts. The present study examined the cell-specific localization and temporal expression of epithelial cadherin (E-cadherin) and alpha- and beta-catenin during follicular development, ovulation and corpus luteum formation in the immature gonadotrophin- and oestrogen-stimulated rat ovary. Immunohistochemistry and immunoblotting demonstrated the expression of E-cadherin in theca and interstitial cells of immature ovaries before and after injection of equine chorionic gonadotrophin (eCG). E-cadherin was not detected in granulosa cells, except in the preantral follicles located to the inner region of the ovary. The content of E-cadherin in theca and interstitial cells decreased after an ovulatory dose of hCG. Granulosa cells of apoptotic follicles did not express E-cadherin. Oestrogen treatment (diethylstilboestrol) of immature rats for up to 3 days did not result in a measurable expression of E-cadherin in granulosa cells. alpha- and beta-catenin were expressed in all ovarian compartments. The concentration of beta-catenin was constant during the follicular phase, whereas the content of alpha-catenin decreased in granulosa cells after treatment with diethylstilboestrol or hCG. The expression of alpha-catenin was also reduced in theca and interstitial cells after hCG. alpha- and beta-catenin were present in most ovarian cells at all stages of folliculogenesis. Therefore, the catenins have the potential to associate with different members of the cadherin family and to participate in the regulation of cytoskeletal structures and intracellular signalling. The restricted expression of E-cadherin in granulosa cells of preantral follicles indicates a role in the recruitment of these follicles to subsequent cycles. The specific decrease of alpha-catenin in granulosa cells and the reduction of both alpha-catenin and E-cadherin in theca cells of ovulatory follicles might reflect some of the molecular changes in cell-cell adhesion associated with ovulation and luteinization.  相似文献   

18.
19.
Plasminogen activators (PAs) have been shown to be synthesized in ovarian follicles of several mammalian species, where they contribute to the ovulation process. The type of PA secreted by granulosa cells is species-specific. In fact, whereas in the rat, gonadotropins stimulate tissue-type PA (tPA) production, the same hormonal stimulation induces urokinase PA (uPA) secretion in mouse cells. To investigate in more detail the hormonal regulation of this system, we used the rat ovary as a model in which we analyzed the production of PAs by theca-interstitial (TI) and granulosa cells obtained from preovulatory follicles after gonadotropin stimulation. In untreated rats, uPA was the predominant enzyme in both TI and granulosa cells. After hormonal stimulation, an increase in uPA and tPA activity was observed in both cell types. Surprisingly, only tPA mRNA increased in a time-dependent manner in both cell types, while uPA mRNA increased only in TI cells and actually decreased in granulosa cells. These divergent results between uPA enzyme activity and mRNA levels in granulosa cells were explained by studying the localization of the enzyme. Analysis of granulosa cell lysates showed that after hormonal stimulation, 60-70% of the uPA behaved as a cell-associated protein, suggesting that uPA, already present in the follicle, accumulates on the granulosa cell surface through binding to specific uPA receptors. The redistribution of uPA in granulosa cells and the differing regulation of the two PAs by gonadotropins in the rat ovary suggest that the two enzymes might have different functions during the ovulation process. Moreover, the ability of antibodies anti-tPA and anti-uPA to significantly inhibit ovulation only when coinjected with hCG confirmed that the PA contribution to ovulation occurs at the initial steps.  相似文献   

20.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号