首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine roots constitute a large and dynamic component of the carbon cycles of terrestrial ecosystems. The reported fivefold discrepancy in turnover estimates between median longevity (ML) from minirhizotrons and mean residence time (MRT) using carbon isotopes may have global consequences. Here, a root branch order-based model and a simulated factorial experiment were used to examine four sources of error. Inherent differences between ML, a number-based measure, and MRT, a mass-based measure, and the inability of the MRT method to account for multiple replacements of rapidly cycling roots were the two sources of error that contributed more to the disparity than did the improper choice of root age distribution models and sampling bias. Sensitivity analysis showed that the rate at which root longevity increases as order increases was the most important factor influencing the disparity between ML and MRT. Assessing root populations for each branch order may substantially reduce the errors in longevity estimates of the fine root guild. Our results point to the need to acquire longevity estimates of different orders, particularly those of higher orders.  相似文献   

2.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

3.
Global change and root function   总被引:7,自引:0,他引:7  
Global change includes land-use change, elevated CO2 concentrations, increased temperature and increased rainfall variability. All four aspects by themselves and in combination will influence the role of roots in linking below- and above-ground ecosystem function via organic and inorganic resource flows. Root-mediated ecosystem functions which may be modified by global change include below-ground resource (water, nutrients) capture, creation and exploitation of spatial heterogeneity, buffering of temporal variations in above-ground factors, supply and storage of C and nutrients to the below-ground ecosystem, mobilization of nutrients and C from stored soil reserves, and gas exchange between soil and atmosphere including the emission from soil of greenhouse gases. The theory of a functional equilibrium between root and shoot allocation is used to explore predicted responses to elevated CO2 in relation to water or nutrient supply as limiting root function. The theory predicts no change in root:shoot allocation where water uptake is the limiting root function, but substantial shifts where nutrient uptake is (or becomes) the limiting function. Root turnover will not likely be influenced by elevated CO2, but by changes in regularity of water supply. A number of possible mechanisms for root-mediated N mineralization is discussed in the light of climate change factors. Rhizovory (root consumption) may increase under global change as the balance between plant chemical defense and adapted root consuming organisms may be modified during biome shifts in response to climate change. Root-mediated gas exchange allows oxygen to penetrate into soils and methane (CH4) to escape from wetland soils of tundra ecosystems as well as tropical rice production systems. The effect on net greenhouse gas emissions of biome shifts (fens replacing bogs) as well as of agricultural land management will depend partly on aerenchyma in roots.  相似文献   

4.
周文杰  张鹏  秦嗣军  吕德国   《生态学杂志》2015,26(11):3300-3308
在1年生盆栽甜樱桃土壤中添加葡萄糖和淀粉(4 g·kg-1),以不添加外源碳为对照,处理后0~60 d内定期采根区土样测定土壤微生物生物量碳、蔗糖酶和淀粉酶活性以及微生物群落功能多样性,处理后第30天测定根系呼吸速率、呼吸途径和根系活力.结果表明: 添加葡萄糖后,土壤蔗糖酶活性及微生物生物量碳均表现为先升高再降低,峰值分别出现在处理后第15天及第7天,分别高于对照14.0%和13.1%,土壤有机质含量表现为先升高再降低再缓慢回升;添加淀粉后显著提高了土壤淀粉酶活性,第15天时为对照的8.5倍,土壤微生物生物量碳除在第7天低于对照外,其余时期均高于对照,土壤有机质含量表现为先升高再下降,处理后第60天高于对照19.8%.BIOLOG分析表明,处理后第15天平均吸光度(AWCD)值及微生物活性均达到最大值,表现为淀粉>葡萄糖>对照.处理后第30天,葡萄糖处理显著增加了土壤微生物对碳水化合物类、羧酸类、氨基酸类、酚酸类和胺类碳源的利用,淀粉处理显著增加了土壤微生物对碳水化合物类、羧酸类、聚合物类和酚酸类碳源的利用.处理后第30天,葡萄糖处理甜樱桃根系总呼吸速率分别较对照及淀粉处理提高21.4%和19.4%,根系活力分别提高65.5%和37.0%.添加葡萄糖和淀粉影响了甜樱桃根区土壤稳定碳源及不稳定碳源的代谢过程,整体上提高了土壤微生物活性,增强了甜樱桃根系呼吸速率及根系活力.  相似文献   

5.
Cover crops increase carbon (C) inputs to agricultural soils, and thus have the potential to mitigate climate change through enhanced soil organic carbon (SOC) storage. However, few studies have explored the fate of belowground C inputs associated with varying root traits into the distinct SOC pools of mineral-associated organic carbon (MAOC) particulate organic carbon (POC). Therefore, a packed 0.5 m column trial was established with 0.25 m topsoil and 0.25 m subsoil with four cover crops species (winter rye, oilseed radish, chicory, and hairy vetch) known to differ in C:N ratio and root morphology. Cover crops were 14CO2-labeled for 3 months, and then, half of the columns were sampled to quantify root and rhizodeposition C. In the remaining columns, plant shoots were harvested and the undisturbed soil and roots were left for incubation. Bulk soil from both sampling times was subjected to a simple fractionation scheme, where 14C in the <50 and >50 μm fraction was assumed to represent MAOC and POC, respectively. The fast-growing rye and radish produced the highest root C. The percentage loss of C via rhizodeposition (%ClvR) showed a distinct pattern, with 22% for the more branched roots (rye and vetch) and 6%–8% for the less branched roots (radish and chicory). This suggests that root morphology plays a key role in determining rhizodeposition C. After 1 year of incubation at room temperature, the remaining MAOC and POC were positively correlated with belowground inputs in absolute terms. However, topsoil MAOC formation efficiencies (cover crop-derived MAOC remaining as a share of belowground inputs) were higher for vetch and rye (21% and 15%, respectively) than for chicory and radish (9% and 10%, respectively), suggesting a greater importance of rhizodeposition (or indirectly, root morphology) than solely substrate C:N ratio for longer term C stabilization.  相似文献   

6.
Total root production (∑P), total root loss (∑L), net root production. (NP), and biomass production were determined for seedlings of Betula papyrifera and Acer rubrum in ambient and elevated CO2 environments. ∑P, ∑L, and NP were calculated from sequential, independent observations of root length production through plexiglass windows. Elevated CO2 increased ∑P, ∑L, and NP in seedlings of Betula papyrifera but not Acer rubrum. Root production and loss were qualitatively similar to whole-plant growth responses to elevated CO2. Betula showed enhanced ∑P, ∑L, and biomass with elevated CO2 but Acer did not. However, the observed effects of CO2 on root production and loss did not alter the allometric relationship between root production and root loss for either Acer or Betula. Thus, in this experiment, elevated CO2 did not affect the relationship between root production and root loss. The results of this study have important implications for the potential effects of elevated CO2 on root dynamics. Elevated CO2 may lead to increases in root production and in root loss (turnover) where the changes in root turnover are largely a function of the magnitude of root production increases.  相似文献   

7.
The root growth simulation model of Diggle (ROOTMAP; 1988) was modified to allow the numerical output of data on root intersections with horizontal and vertical planes. ROOTMAP was used to generate two three-dimensional model structures of fibrous root systems. The lateral roots were oriented randomly (geotropism index=0) but the main axes were positively gravitropic (geotropism index=0.6). The mean density of root intersections (n, cm-2) with the sides of a series of 5×5×5 cm cubic volumes was related approximately linearly to the root length density (Lt cm-2) within each volume by the equation Lt=2.3n (correlation coefficient, r=0.981). This compared with the relation of Lt=2n predicted theoretically for randomly oriented lines (Melhuish and Lang, 1968). Root length density was related to the intersection density by the equation Lt=2.43nv (r=0.940) for the vertical faces and Lt=1.88nh (r=0.984) for the horizontal faces. Lt/nv was greater than Lt/nh because of the preferential vertical orientation of the main root axes. The Melhuish and Lang (1968) equation does not generally give accurate prediction of root length density from field experiment data. Under field conditions, values have been reported in the ranges of 1.4 to 16 for Lt/nh, and 3.8 to 9 for Lt/nv. The most likely explanation for this difference is that only a small proportion (e.g. about 20–30%) of the actual number of roots are counted using the core-break and root mapping (including the trench wall) methods, due to the practical experimental difficulties of identifying individual fine roots under field conditions. Detailed experimental studies are needed to identify what portion of the root system is recorded using these field techniques (e.g. whether the main root axes are counted while the fine lateral roots remain undetected). Three-dimensional models of root growth provide a new method of studying the relations between Lt, nv and nh for root systems generated stochastically according to known geometrical rules. Using these models it will be possible to determine the effects of the degree of gravitropism and of root branching on the value and on the variability of Lt/nh and Lt/nv. The effectiveness of the statistical corrections that have been developed to correct for non-random root orientation can also be evaluated, as can the effects of sample position.  相似文献   

8.
青杨人工林根系生物量、表面积和根长密度变化   总被引:6,自引:1,他引:5  
燕辉  刘广全  李红生 《应用生态学报》2010,21(11):2763-2768
在植物生长季节,采用钻取土芯法对秦岭北坡50年生青杨人工林根径≤2 mm和2~5 mm根系的生物量、表面积和根长密度进行测定.结果表明:在青杨人工林根系(<5 mm)中,根径≤2 mm根系占总生物量的77.8%,2~5 mm根系仅占22.2%;根径≤2 mm根系表面积和根长密度占根系总量的97%以上,而根径2~5 mm根系不足3%.随着土层的加深,根径≤2 mm根系生物量、表面积和根长密度数量减少,根径2~5 mm根系生物量、表面积和根长密度最小值均分布在20~30 cm土层.≤2 mm根系生物量、表面积和根长密度与土壤有机质、有效氮呈极显著相关,而根径2~5 mm根系的相关性不显著.  相似文献   

9.
不同分类系统下油松幼苗根系特征的差异与联系   总被引:3,自引:0,他引:3       下载免费PDF全文
植物根序和径级不仅反映细根的形态结构, 而且能反映根系的一些生理特征, 如细根寿命和周转等。该文以二年生油松(Pinus tabulaeformis)幼苗根系为研究对象, 系统比较了根序分类方法和径级分类方法在描述根系特征上的优缺点, 探索了两者之间的内在联系。结果表明: 二年生油松幼苗最多可包括6级根序, 直径的变化范围为0.169-3.877 mm。按根序划分, I-VI级根序的总根长和总根表面积主要集中在前3级根序, 这3级根序的根占总根长的78.77%和总根表面积的62.72%。前3级根序的比根长是后3级根序比根长的1.3-3.0倍, 比根面积是后3级比根面积的1.0-1.5倍。按常用的径级(以0.5、1.0、1.5和2.0 mm为阈值)划分方法, 油松幼苗大部分根系直径≤1.5 mm, 此区间细根的根长和根表面积占总根长的93.76%和总根表面积的84.35%。直径≤1.5 mm的细根平均比根长是>1.5 mm细根比根长的3-7倍, 比根面积的1.5-3.0倍。由于油松根序和径级之间有显著的指数关系, 依据径级最大程度反映根序的原则, 提出了新的径级划分方法, 即以0.4、0.8、1.3和2.0 mm为阈值对油松幼苗根系径级重新进行划分。此时, 上述区间可分别包括I级、II级、III级、IV级、V级根序中根尖数的93.22%、86.37%、75.96%、70.47%和76.67%。同时也可分别涵盖各径级根长的89.34%-70.83%、根面积的86.01%-76.12%以及体积的87.73%-76.12%。此时, 根系不同径级与根序之间可以建立起良好的对应关系。这些结果表明, 通过合理划分径级区间可以较好地反映根序 特征。  相似文献   

10.
通过室内培养试验,研究了不同温度(9 ℃、14 ℃、24 ℃和28 ℃)条件下桤木、杉木和火力楠细根分解对土壤活性有机碳的影响.结果表明,不同树种细根的分解率不同,树种间差异显著,大小依次为火力楠>桤木>杉木.细根分解率随着培养温度的增加而增大,随着培养时间的延长而降低.添加细根的种类、培养温度和培养时间均对实验系统中土壤微生物碳和水溶性有机碳的含量产生影响.3个树种细根分解使土壤微生物碳和水溶性有机碳含量显著高于对照,大小依次为火力楠>桤木>杉木>对照; 培养中期以及中等培养温度条件下细根分解对应着较高的土壤微生物碳和水溶性有机碳含量.细根分解对土壤易氧化碳含量无显著影响.  相似文献   

11.
植物根系养分捕获塑性与根竞争   总被引:7,自引:0,他引:7       下载免费PDF全文
王鹏  牟溥  李云斌 《植物生态学报》2012,36(11):1184-1196
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。  相似文献   

12.
13.
A study was carried out on the root distribution and root activity of the olive tree (Olea Europaea, L., var. manzanillo) as influenced by drip irrigation and by several soil characteristics such as texture and depth. The experiments were conducted in two plots within a drip-irrigated grove of 20-year-old trees planted at 7×7 m spacing. One soil was a sandy loam, the other a clay-loam. Both cylinder and trench methods were used to determine root distribution. Labelling with 32P was used to determine root activity. Under dryland conditions the adult tree adapted its rooting system, following the installation of a drip system, by concentrating the roots within the wet soil zones near the drippers. The highest root densities occur in those zones, down to a 0.6 m depth, the most abundant being the <0.5 mm diameter roots. The most intensive root activity was also found in that zone. For a given irrigation system, wet soil bulbs are more extensive and therefore root distribution expands to a larger soil volume when the soil is more clayey and with a hard calcareous pan present at about 0.8 m depth which prevents deep drainage.  相似文献   

14.
Carbon cost of root systems: an architectural approach   总被引:16,自引:2,他引:14  
Root architecture is an important component of nutrient uptake and may be sensitive to carbon allocational changes brought about by rising CO2. We describe a deformable geometric model of root growth, SimRoot, for the dynamic morphological and physiological simulation of root architectures. Using SimRoot, and measurements of root biomass deposition, respiration and exudation, carbon/phosphorus budgets were developed for three contrasting root architectures. Carbon allocation patterns and phosphorus acquisition efficiencies were estimated for Phaseolus vulgaris seedlings with either a dichotomous, herringbone, or empirically determined bean root architecture. Carbon allocation to biomass, respiration, and exudation varied significantly among architectures. Root systems also varied in the relationship between C expenditure and P acquisition, providing evidence for the importance of architecture in nutrient acquisition efficiency.  相似文献   

15.
荣丽  李守剑  李贤伟  张健  王鹏 《生态学报》2011,31(1):137-144
由于土壤活性有机碳可以在土壤全碳变化之前反映土壤因管理措施和环境引起的微小的变化,又直接参与土壤微生物化学转化过程,对土壤碳平衡和土壤化学、土壤肥力保持具有重要意义。因此,采用原状土芯(intact core)法,探讨了4种退耕还林模式--光皮桦(Betula luminifera)与扁穗牛鞭草(Hemarthria compressa)复合模式、扁穗牛鞭草草地、柳杉(Cryptameria fortunei)人工林、光皮桦人工林细根(草根)分解过程中的C动态以及土壤活性有机碳变化。研究结果表明,各模式细根(草根)中的C表现为净释放,其质量残留率符合单指数模型(P<0.01)。光皮桦与扁穗牛鞭草复合模式下的土壤微生物量碳(SMBC)、水溶性有机碳(WSOC)、易氧化碳(ROC)、总有机碳(TOC)都大于其他3种模式。4种模式下的SMBC对土壤TOC的贡献分别是1.2%-3.3%、0.7%-1.5%、0.8%-2.2%、0.5%-0.8%;光皮桦与扁穗牛鞭草复合模式的ROC/TOC大于其他3种模式模式;各模式土壤ROC含量与土壤TOC呈极显著正相关关系(P<0.05)。以上结果显示,与其他人工林相比,光皮桦与扁穗牛鞭草复合模式土壤有机碳活性大、易转化,土壤总有机碳的高低决定了易氧化碳的丰缺。  相似文献   

16.
Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r2 = 0.68, < 0.05), and that the turnover rates of both leaf (r2 = 0.63, < 0.05) and fine root (r2 = 0.55, < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole‐plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m2 m?2, suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below‐ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites.  相似文献   

17.
Abstract

Research into root system morphology over the last two centuries has developed a diverse set of terminologies that are difficult to apply consistently across species and research specialties. In response to a need for better communication, a workshop held by the International Society for Root Research established some nomenclature standards for root research. These standards and their justification are presented in this study. A framework for a root system architectural taxonomy is created by defining four main classes of root: the tap root, that is, the first root to emerge from the seed; lateral roots, which are branches of other roots; shoot‐borne roots, which arise from shoot tissues; and basal roots, which develop from the hypocotyl, that is, the organ which is between the base of the shoot and the base of the tap root. It is concluded that adherence to the presented taxonomy will reduce confusion and eliminate some of the current confounding of results.  相似文献   

18.
植物的根系分泌物是植物根系与周围环境之间的化学媒介,通过传递特定的信息,调节根际微环境,影响周围植物的生长。玉米(Zea mays L.)和荞麦(Fagopyrum esculentum Moench)是农作物间套作体系中典型的不能搭配的组合,其障碍因素尚不清楚。以玉米为受体植物,采用根悬空培养的方法,研究了荞麦、高粱(Sorghum bicolor(L.) Moench)根系分泌物对玉米根边缘细胞和根生长的影响。结果发现,玉米根边缘细胞离体培养条件下,用荞麦根系分泌物中的小分子物质处理4、8 h显著诱导边缘细胞凋亡、死亡,细胞活率分别比对照降低了71.6%和72.3%;荞麦根系分泌物中的小分子物质对玉米根产生氧化胁迫,诱导根SOD、POD和CAT活性分别比对照高22.6%、33.9%和107.2%,根中超氧阴离子(O2)和脯氨酸含量分别比对照高33.9%和49.8%;荞麦根系分泌物中小分子物质的胁迫使根细胞膜透性增大,与对照相比升高80.0%,丙二醛(MDA)含量比对照升高31.5%;荞麦根系分泌物中小分子物质诱导根内源激素(IAA)含...  相似文献   

19.
Plants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect.  相似文献   

20.
A biological clock activated by oscillating signals, known as root clock, has been linked to lateral root (LR) formation and is essential for regular LR spacing along the primary root. However, it remains unclear how this internal mechanism is influenced by environmental factors known to affect the LR pattern. Here, we report that excessive cadmium (Cd) inhibits LR formation by disrupting the lateral root cap (LRC)‐programmed cell death (PCD)‐regulated root clock. Cd restricts the frequency of the oscillating signal rather than its amplitude. This could be attributed to the inhibition on meristematic activity by Cd, which resulted in decreased LRC cell number and LRC‐PCD frequency. Genetic evidence further showed that LRC cell number is positively correlated with root resistance to Cd. Our study reveals root cap dynamics as a novel mechanism mediating root responses to Cd, providing insight into the signalling pathways of the root clock responding to environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号