首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report on the influence of trace elements (TE) on signal intensities of nuclear magnetic resonance images (MRI), both in vivo and in vitro. Optimal parameters for the assessment of Mn concentration in the brain of rats on total parenteral nutrition were established. For the in vitro study, Mn and trace element solutions, one containing Zn, Cu, Fe, and I (TE-4) and another containing the above elements plus Mn (TE-5), were diluted with physiological saline or with rat brain homogenate and used to measure signal intensities in MRI. Concentration-dependent signal hyperintensity was observed in both cases in the Mn and the TE-5 solutions, but no effect was observed with the TE-4 solution. The signal increase was greater for brain tissue homogenates. In the in vivo study, the experimental animals were maintained under total parenteral nutrition (TPN) with a standard clinical dose of TE-5 and/or with 10-fold the clinical dose of TE-4 and TE-5 for 1 wk. Only rats that were receiving the increased TE-5 dose showed signal hyperintensity on MRI. Positive correlations were observed among the signal hyperintensity, the blood Mn concentrations, and that of the rat brain. Our results suggest that Mn in TE preparations may be the cause of signal hyperintensity on MRI in a concentration-dependent fashion, and that MRI and measurement of blood Mn may be used to estimate Mn accumulation in brain tissue.  相似文献   

2.
To investigate the effects of enteral and parenteral alimentation on VLDL release from the liver, a lipid-free liquid nutriment was continuously administered to free-moving rats via the oral cavity (oral group), stomach (enteral group) or superior caval vein (parenteral group). After 1-week of nutrition, the plasma VLDL concentrations were significantly lowered in the enterally-fed group. By immunoblotting assay using a specific antiserum, plasma contents of both apoprotein B-100 and B-48, the major components of rat apoprotein B, were found to be decreased in the enteral group, whereas only that of apoprotein B-48 was reduced in the parenteral group as compared with the oral group. Sucrose gradient centrifugation of the lipid droplets in the liver from the enteral group showed an increase of the free-triacylglycerol fraction with a concomitant increase of the apoprotein B-48-rich triacylglycerol fraction. These results suggest that enteral nutrition causes triacylglycerol accumulation in the liver, at least in part by impairment of lipoprotein release from the liver.  相似文献   

3.
Role of carnitine during development   总被引:3,自引:0,他引:3  
Fatty acids are an important fuel source for neonates. The utilization of long chain fatty acids as a fuel source is dependent upon adequate concentrations of carnitine. Carnitine also has functions in other physiological processes critical to the survival of the neonate such as lipolysis, thermogenesis, ketogenesis, and possibly regulation of certain aspects of nitrogen metabolism. Plasma and tissue carnitine concentrations in neonates are depressed compared with those of older individuals. The capability for carnitine biosynthesis is much less in the neonate than in the adult. Human milk contains carnitine and appears to be the major source of carnitine to meet the neonate's metabolic needs. However, total parenteral nutrition solutions and soy-based infant formulas contain no carnitine. Evidence is accumulating that all infant diets may need to supply carnitine to meet the neonate's metabolic needs.  相似文献   

4.
The effect of calcium supplementation on absorption and retention of cadmium in the suckling period was evaluated in Wistar rat pups of both sexes. Animals were maintained in the litters with the mother rats and supplemented with 1%, 3% or 6% calcium (as CaHPO4×2H2O) in cow's milk by artificial feeding from day of birth 6 through 14. All rats were exposed to cadmium (as CdCl2×H2O) either orally or parenterally. Oral cadmium dose of 0.5 mg/kg body weight a day was administered through nine-day period of calcium supplementation and parenteral cadmium dose was injected subcutaneously in a single dose of 0.5 mg Cd/kg body weight prior to calcium supplementation. On experimental day 10 (at the age of pups of 15 days) all animals were killed and the liver, kidneys, brain and carcass (body without organs and skin) were removed for element analyses. Cadmium and essential elements calcium, zinc and iron were analysed in the tissues by atomic absorption spectrometry. Results showed that after oral exposure cadmium concentrations in all calcium-supplemented groups were significantly decreased in the organs and carcass and that the effect was dose-related. No such effect of calcium was found after parenteral cadmium exposure. Calcium supplementation per se significantly increased calcium concentration in the carcass and had no effect on iron in organs and zinc in carcass. It was concluded that calcium supplementation during the suckling period could be an efficient way of reducing oral cadmium absorption and retention without affecting tissue essential trace element concentrations.  相似文献   

5.
Ontogeny of intestinal nutrient transport   总被引:1,自引:0,他引:1  
Children born prematurely lack the ability to digest and to absorb nutrients at rates compatible with their nutritional needs. As a result, total parenteral nutrition may need to be given. While this nutritional support may be lifesaving, the baby who receives this therapy is exposed to the risks of possible sepsis, catheter dysfunction, and liver disease. The rodent model of postnatal development provides a useful framework to investigate some of the cellular features of human intestinal development. The up-regulation of intestinal gene expression and precocious development of intestinal nutrient absorption can be achieved by providing growth factor(s) or by modifying the composition of the maternal diet during pregnancy and nursing or the weaning diet of the infant. Accelerating the digestive and absorptive functions of the intestine would thereby allow for the maintenance of infant nutrition through oral food intake, and might possibly eliminate the need for, and risks of, total parenteral nutrition. Accordingly, this review was undertaken to focus on the adaptive processes available to the intestine, to identify what might be the signals for and mechanisms of the modified nutrient absorption, and to speculate on approaches that need to be studied as means to possibly accelerate the adaptive processes in ways which would be beneficial to the newborn young.  相似文献   

6.
Monomeric acrylamide is an important industrial chemical primarily used in the production of polymers and copolymers. It is also used for producing grouts and soil stabilizers. Acrylamide's neurotoxic properties have been well documented. This review will focus on pertinent information concerning other, non-neurotoxic, effects observed after exposure to acrylamide, including: its genotoxic, carcinogenic, reproductive, and developmental effects. It will also cover its absorption, metabolism, and distribution. The data show that acrylamide is capable of inducing genotoxic, carcinogenic, developmental, and reproductive effects in tested organisms. Thus, acrylamide may pose more than a neurotoxic health hazard to exposed humans. Acrylamide is a small organic molecule with very high water solubility. These properties probably facilitate its rapid absorption and distribution throughout the body. After absorption, acrylamide is rapidly metabolized, primarily by glutathione conjugation, and the majority of applied material is excreted within 24 h. Preferential bioconcentration of acrylamide and/or its metabolites is not observed although it appears to persist in tests and skin. Acrylamide can bind to DNA, presumably via a Michael addition-type reaction, which has implications for its genotoxic and carcinogenic potential. The available evidence suggests that acrylamide does not produce detectable gene mutations, but that the major concern for its genotoxicity is its clastogenic activity. This clastogenic activity has been observed in germinal tissues which suggest the possible heritability of acrylamide-induced DNA alterations. Since there is 'sufficient evidence' of carcinogenicity in experimental animals as outlined under the U.S. EPA proposed guidelines for carcinogen risk assessment, acrylamide should be categorized as a 'B2' carcinogen and therefore be considered a 'probable human carcinogen.' The very limited human epidemiological data do not provide sufficient evidence to enable one to judge the actual carcinogenic risk to humans. Acrylamide is able to cross the placenta, reach significant concentrations in the conceptus and produce direct developmental and post-natal effects in rodent offspring. It appears that acrylamide may produce neurotoxic effects in neonates from exposures not overtly toxic to the mothers. Acrylamide has an adverse effect on reproduction as evidenced by dominant lethal effects, degeneration of testicular epithelial tissue, and sperm-head abnormalities.  相似文献   

7.
The goal of growth factor treatment in patients with short bowel syndrome (SBS) is to facilitate transition from parenteral to enteral feedings. Ideal use of growth factors would be acute treatment that produces sustained effects. We investigated the ability of acute insulin-like growth factor I (IGF-I) treatment to facilitate weaning from total parenteral nutrition (TPN) to enteral feeding in a rat model of SBS. After a 60% jejunoileal resection + cecectomy, rats treated with IGF-I or vehicle were maintained exclusively with TPN for 4 days and transitioned to oral feeding. TPN and IGF-I were stopped 7 days after resection, and rats were maintained with oral feeding for 10 more days. In IGF-I-treated rats, serum concentration of IGF-I and final body weight were significantly greater because of a proportionate increase in carcass lean body mass than in vehicle-treated rats. Acute IGF-I treatment induced sustained jejunal hyperplasia on the basis of significantly greater concentrations of jejunal mucosal protein and DNA without a change in histology or sucrase activity. These results demonstrate that acute IGF-I facilitates weaning from parenteral to enteral nutrition in association with maintenance of a greater body weight and serum IGF-I concentration in rats with SBS.  相似文献   

8.
The concentrations of heavy metals in rice grains and soils from Ada cultivated fields were investigated. Rice and soil samples were digested and the heavy metal concentrations determined using atomic absorption spectrophotometer. The results showed the following concentrations of metals (mg/kg): soil—Pb (4.64 ± 2.18), Cd (0.83 ± 0.83), Zn (20.26 ± 18.60), Mn (68.90 ± 19.91), Ni (3.46 ± 2.42), and Cr (21.41 ± 14.6); rice—Pb (3.99 ± 1.43), Cd (1.10 ± 0.53), Zn (65.37 ± 58.09), Mn (37.81 ± 5.82), Ni (3.12 ± 1.49), and Cr (10.87 ± 6.47). The Canadian, Nigerian and Chinese maximum allowable concentration for cadmium in soil were exceeded by 15%, 30%, and 85% of the soil samples, respectively. Heavy metals in all the rice samples evaluated were found to be above the World Health Organization (WHO) maximum permissible limit for lead, cadmium, and chromium. Strong positive and significant correlations were observed between some metal pairs in soil and rice indicating the similarity in origin. The estimated daily intakes of Pb and Cd from rice grown on the fields were higher than the safety levels established by WHO and the Joint FAO/WHO Expert Committee Food Additive, respectively. Hazard quotients and total hazard index for Pb and Cd were greater than 1. This indicates that consumption of rice from these fields will likely induce adverse health effects arising largely from Pb and Cd exposure.  相似文献   

9.
Manganese (Mn) can be neurotoxic when present in high concentrations. Neonatal animals show differential absorption, accumulation, and excretion of Mn relative to adults. If similar kinetic differences exist during gestation, then fetal animals may be susceptible to Mn neurotoxicity. The objective of this study was to examine maternal-fetal Mn transfer and the susceptibility of prenatal animals to Mn neurotoxicity. This was approached by studying the ability of Mn to cross the placenta and reach the fetal central nervous system using radiotracer and atomic absorption spectroscopy techniques. Manganese is thought to disrupt catecholamine neurotransmission in the central nervous system. This was examined in newborn rats by alpha-methyl-para-tyrosine induced catecholamine turnover and the development of the acoustic startle response. The results suggest that there are limits on fetal Mn accumulation under conditions of both normal and excessive dietary Mn levels. Manganese accumulation in the fetal brain after exposure to increased dietary Mn does not alter either dopamine or norepinephrine turnover or the development of the acoustic startle response. Excess Mn does not appear to be neurotoxic to fetal rats in spite of its limited accumulation in nervous tissue after gestational exposure.  相似文献   

10.
The effects of latent iron deficiency combined with parenteral subchronic or acute cadmium exposure during pregnancy on maternal and fetal tissue distribution of cadmium, iron and zinc, and on fetal viability were evaluated. Timed-pregnant Sprague-Dawley rats were fed on semisynthetic test diets with either high iron (240 mg kg) or low iron (10 mg kg), and concomitantly exposed to 0, 3 or 5 mg cadmium (as anhydrous CdCl2) per kilogram body weight. Animals were exposed to cadmium from gestation day 1 through 19 by subcutaneously implanted mini pumps (Subchronic exposure) or on gestation day 15 by a single subcutaneous injection (Acute exposure). All rats were killed on gestation day 19. Blood samples, selected organs and fetuses were removed and prepared for element analyses by atomic absorption spectrometry. Low iron diet caused decreases in maternal body weight, maternal and fetal liver weights, placental weights and tissue iron concentrations. By cadmium exposure, both subchronic and acute, tissue cadmium concentrations were increased and the increase was dose-related, maternal liver and kidney zinc concentrations were increased, and fetal zinc concentration was decreased. Cadmium concentration in maternal liver was additionally increased by low iron diet. Acute cadmium exposure caused lower maternal body and organ weights, high fetal mortality, and decreased fetal weights of survivors. In conclusion, parenteral cadmium exposure during pregnancy causes perturbations in essential elements in maternal and fetal compartments. Acute cadmium exposure in the last trimester of gestation poses a risk for fetal viability especially when combined with low iron in maternal diet.  相似文献   

11.
It is well established that parenteral treatment of female zebra finch chicks with estradiol masculinizes their song control nuclei and that as adults they are capable of song. Concern over the widespread use of putative environmental estrogens caused us to ask whether oral exposure to estrogens (a natural route of exposure) could produce similar effects. We dosed chicks orally with estradiol benzoate (EB; 1, 10, 100, and 1000 nmol/g of body mass per day, days 5-11 posthatch), the non-ionic surfactant octylphenol (100 and 1000 nmol/g), or the pesticides methoxychlor (100 and 1000 nmol/g) and dicofol (100 nmol/g) and measured their song control nuclei as adults. EB treatment produced increases in song nuclei comparable to that induced by parenteral administration of estrogens. This is the first study of which we are aware to use an oral route of administration, which simulates the natural process of parent birds feeding their nestlings. We conclude that oral exposure to estradiol alters song control nuclei and we report in a related paper (Millam et al., 2001) that such exposure severely disrupts reproductive performance. Although we detected no influence of xenobiotics on induction of song control nuclei the possibility remains that oral exposure to xenoestrogens in high enough doses could affect development.  相似文献   

12.
A conventional balance study with 48 male weanling rats was conducted to determine true absorption and endogenous fecal excretion of manganese (Mn) in relation to dietary Mn supply, following the procedures of a previously adapted isotope dilution technique. After 10 d on a diet with 1.5 ppm Mn, eight animals each were assigned to diets containing 1.5, 4.5, 11.2, 35, 65, or 100 ppm Mn on a dry-matter basis. Three days later, each rat was given an intramuscular54Mn injection and kept on treatment for a balance period of 16 d. Apparent Mn absorption assessed for the final 8 d, averaged 8.6 μg/d without significant treatment effects, although Mn intake ranged from 18.6 to 1200 μg/d, in direct relation to dietary Mn concentrations. Mean fecal excretion of endogenous Mn for the six treatments was 0.9, 2.7, 7.4, 11.0, 16.3, and 17.7 μg/d, respectively. These values delineate the rates to which true absorption exceeded apparent rates. True absorption, as percent of Mn intake, averaged 28.7, 15.9, 11.7, 6.1, 3.4, and 2.0, respectively, as compared with mean values of 23.9, 10.9, 6.2, 3.4, 1.2, and 0.5 for percent apparent absorption. It was concluded that both true absorption and endogenous fecal excretion markedly responded to Mn nutrition and that the reduction in the efficiency of true absorption was quantitatively the most significant homeostatic response for maintaining stable Mn concentrations in body tissues.  相似文献   

13.
Twenty-eight day old wheat (Triticum aestivum L. cv Stacy) response to varying Mn concentration (10.1-10,000 micromolar) in nutrient solution was measured. Manganese concentrations in the most recently matured leaves (blade 1) were 0.21 to 19.03 mmol Mn per kilogram dry weight, respectively. Fresh and dry weights increased to a maximum at the 5 micromolar Mn nutritional level (0.37 millimole Mn per kilogram dry weight) and were decreased at Mn above and below this concentration. Blade 1 chloroplast pigment concentrations increased up to the 20 micromolar Mn nutritional level (1.98 millimole Mn per kilogram dry weight) and decreased at higher Mn concentrations. Thylakoid Mn content was above 1 mole Mn/100 mole chloroplast at Mn nutrition levels which resulted in greatly decreased plant growth. Total phytoene biosynthesis was decreased by Mn deficiency and toxicity. In vitro ent- kaurene synthesis was greatly influenced by Mn concentration with a maximal biosynthesis at 1 micromolar Mn and decreases at Mn levels above and below this concentration. In vivo blade 1 gibberellic acid equivalent concentrations were maximal at 20 parts per million Mn nutrition solution levels (1.98 millimole Mn per kilogram dry weight) and decreased at Mn tissue concentrations above and below this value; additionally, gibberellic acid concentrations were reciprocal to extracted C20 alcohol concentrations. Mn influence on gibberellin and chloroplast pigment biosyntheses exactly matched the measured changes in growth.  相似文献   

14.
The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mother's milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.  相似文献   

15.
Preterm birth is associated with immature digestive function that may require the use of total parenteral nutrition and special oral feeding regimens. Little is known about the responses to oral food in the preterm neonate and how enteral nutrients affect the immature gastrointestinal tract (GIT). In vivo studies are difficult to perform in laboratory rodents because of their small body size and that of immature organs at birth, and this makes the large farm animals (e.g., pigs, cattle, sheep) more attractive models in this field. In these species, preterm delivery at 88%-95% gestation is associated clinical complications and degrees of GIT immaturity similar to those in infants born at 70%-90% gestation. Studies in both animals and infants indicate that the immature GIT responds to the first enteral food with rapid increases in gut mass and surface area, blood flow, motility, digestive capacity, and nutrient absorption. To a large extent, the enteral food responses are birth independent, and can be elicited also in utero, at least during late gestation. Nevertheless, preterm neonates show compromised GIT structure, function, and immunology, particularly when delivered by caesarean section and fed diets other than mother's milk. Formula-fed preterm infants are thus at increased risk of developing diseases such as necrotizing enterocolitis, unless special care is taken to avoid excessive nutrient fermentation and bacterial overgrowth. The extent to which results obtained in preterm animals (most notably the pig) can be used to reflect similar conditions in preterm infants is discussed.  相似文献   

16.
Acute pancreatitis is a disease that, by definition, generates an increase in metabolism. This metabolic reaction, together with the anorexia produced by the disease, clearly increases morbidity and mortality secondary to malnutrition.Malnutrition affects almost 70% of patients with cirrhosis, with a consequent increase in complications. The present review aims to evaluate the utility of the use of total parenteral nutrition (TPN) and/or enteral nutrition (EN) in patients with acute pancreatitis and in those with stable chronic liver disease.In patients with acute pancreatitis, the administration of enteral nutrition seems to confer advantages over parenteral nutrition in clinical variables (infections, surgical interventions, and mean length of hospital stay) (A-B); nevertheless, further studies stratifying patients according to the severity of pancreatitis and probably its etiology should be designed. Glutamine supplementation can be effective in reducing length of hospital stay and duration of nutritional support (B).In patients with stable chronic liver disease, there are no studies that demonstrate the superiority of EN over PN, or vice versa, in relevant clinical variables (mortality, length of hospital stay, etc.). There is only one study that has demonstrated that EN is superior to oral intake in reducing mortality (B).Improved study designs and the need to perform studies according to the type and severity of liver disease should be a research priority.  相似文献   

17.
18.
The adaptation to extrauterine nutrition involves complex physiological changes at birth which may be regulated by genetic endowment; enteral nutrients, secretions, and bacteria; and endogenous hormones and exogenous hormones in breast milk. The hypothesis is explored that enteral feeding after birth may trigger key adaptations in the gut and in metabolism partly through the mediation of gastrointestinal hormone secretion. Gut peptides are found in the early human fetal gut and by the second trimester some are found in high concentrations in the fetal circulation and amniotic fluid. Major plasma hormonal surges occur during the neonatal period in term and preterm infants: notably in enteroglucagon, gastrin, motilin, neurotensin, gastrointestinal peptide, and pancreatic polypeptide. These events do not occur in neonates deprived of enteral feeding. A progressive development of dynamic gut hormonal responses to feeding is observed. The pattern of gut endocrine changes after birth is influenced by the type and route of feeding. Potential pathophysiological effects of depriving high risk neonates of enteral feeding are considered. It is speculated that infants committed to prolonged total parenteral nutrition from birth may benefit from the biological effects of intraluminal nutrients used in subnutritional quantities.  相似文献   

19.
Summary The effects of P and Mn on growth response and uptake of Fe, Mn and P by grain sorghum were investigated using nutrient culture. High P and Mn concentrations in solution (greater than 40 and 1 mg/l for P and Mn, respectively) markedly reduced plant height and shoot and root dry weight of 4-week-old sorghum plants. High Mn concentrations in solution increased the concentrations of Mn and P in shoot tissue and uptake of Mn, but depressed the uptake of P. High levels of P enhanced Mn uptake by sorghum and accentuated Mn toxicity at low Mn levels. The tissue Fe and total uptake of Fe were both reduced markedly by the high levels of P and Mn concentrations in solution. The increases of P, Mn and Fe concentrations in root tissue with a concomitant decrease of Fe in shoots suggested that the translocation of Fe from roots to shoots was hindered under high P and Mn conditions. Since coating occurred on root surfaces and intensified with increasing Mn concentrations in the substrate, part of the reduction of Fe in shoots could be attributed to the formation of high valent manganese oxides on the root surfaces which may retain Fe and reduce its absorption by sorghum.Contribution from the Department of Agronomy and Range Sci., University of California, Davis, CA.  相似文献   

20.
The very young preterm neonate has multiple immune deficiencies which may increase his or her vulnerability to infection. Secretory Immunoglobulin A (SIgA) plays an important role in the protection of epithelial surfaces exposed to the external environment; nevertheless controversy exists with regards to the ontogeny of SIgA in newborns and especially the preterm neonate. The objective was to investigate if SIgA could be detected in the saliva of very/extremely low birthweight neonates (V/ELBW). A total of 707 samples which were collected twice daily (morning and afternoon) for three consecutive days were obtained from sixty-eight preterm neonates (mean gestational age 28 weeks; conceptional age ranged from 25-35 weeks). A repeated measures design was used. Total concentration of SIgA was determined from unstimulated saliva by an Enzyme Linked Immunosorbant Assay technique. Results indicated that SIgA was detectable in the early postnatal period in the saliva of both ventilated preterms who were receiving intravenous total parenteral nutrition (TPN) and non-ventilated preterms. A 3-way repeated measures Analysis of Variance (ANOVA) showed no significant effect from 'before' and 'after' samples during a period of spontaneous activity, time and day of sampling. A significant effect of mode of nutrition was found; neonates who were receiving expressed breast milk had significantly higher concentrations of SIgA than those infants receiving TPN (df=3, F=14.27, p<0.0001). These results have implications for the care of the preterm neonate in intensive care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号