首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effects of polyamines (putrescine, spermidine and spermine) on glutathione reductase (glutathione: NADP+ oxidoreductase, EC 1.8.1.7; GR) activity of spinach leaves (Spinacia oleracea L. cv. Gladiator) were investigated under in vivo and in vitro conditions. Spinach was grown in sand culture under controlled conditions for 30 d. In in vivo assays 30-day-old plants were sprayed with polyamines once, and leaves were harvested 1, 5, 10 and 15 d after treatment. The three polyamines decreased the GR activity to different degrees, depending on time after application, type of compound and their concentration. In order to study whether or not polyamines can exert a direct effect on GR, the enzyme was partially purified from spinach leaves and incubated with polyamines in the reaction medium. Under these in vitro conditions, GR was inhibited by polyamines in a polyamine type- and concentration-dependent manner. Interestingly, spermine exerted the most intense inhibitory effect in both in vivo and in vitro experiments. It is proposed that the early decrease of glutathione reductase activity in leaves treated with polyamines can be due to a direct interaction of these compounds with the enzyme.  相似文献   

2.
Despite the fact that the use of antibiotics is increasing worldwide, it is clear that antibiotics can lead to oxidative stress. This is the first study to make a comparison of the impact of frequently prescribed antibiotics, including amoxicillin, gentamicin, and cefazolin sodium, on the gene, protein, and activity of glutathione reductase (GR), which is one of the primary antioxidant enzymes, in mouse liver and kidney tissues. First, the GR enzyme was purified by the 2′,5′‐ADP Sepharose 4B affinity chromatography with a specific activity of 84.615 EU/mg protein and 9.63 EU/mg protein from the mouse liver and kidney, respectively. The in vitro inhibitory effects of the antibiotics in question was determined. While cefazolin sodium did not exhibit any inhibitory effect, gentamicin and amoxicillin inhibited GR activity in both tissues. Furthermore, the in vivo effects of these drugs were investigated, and amoxicillin and cefazolin sodium‐inhibited GR activity in both liver and kidney tissues, while gentamicin did not have any effect on the kidney. Besides, while gentamicin downregulated and cefazolin sodium upregulated Gr gene expression, amoxicillin did not alter it. Protein expression was only affected by the administration of cefazolin sodium in the kidney. This study is important as it demonstrates that while amoxicillin and gentamicin showed parallel effects on the GR activity in liver and kidney tissues both in vitro and in vivo, cefazolin sodium had a very strong effect on hepatic and renal GR in vivo. Furthermore, the antibiotics used in this study induced oxidative stress in both tissues.  相似文献   

3.
Oxidative stress induced by catecholamines is a well recognized toxic event. This effect has been extensively observed in the heart, where high levels of catecholamines cause enzyme inhibition, lipid peroxidation, energy depletion and myocardial necrosis. Catecholamines can be converted into o-quinones and undergo cyclization into aminochromes. This process can occur enzymatically or through autoxidation and involves the formation of free radicals. Aminochromes are highly reactive molecules that can cause oxidation of protein sulfhydryl groups and deamination catalysis, among other deleterious effects; in addition, inhibition of some enzymes has been also reported. We have studied the effects of isoproterenol oxidation products (IOP) on glutathione reductase (GR) activity in vitro. Isoproterenol (ISO) autoxidation was conducted at 37 degrees C in the dark, for 4 h at pH 7.0 and this process was monitored by UV spectrophotometry at both 340 and 490nm. Addition of the autoxidized solution to GR in the presence of oxidized glutathione (GSSG) and NADPH showed that IOP inhibits GR in a competitive mode and that this effect increases during the 4 h incubation period. This inhibitory effect of IOP was partially prevented by the addition of reduced glutathione (GSH), L-cysteine and ascorbic acid to the reaction mixtures.  相似文献   

4.
Oxidative stress induced by catecholamines is a well recognized toxic event. This effect has been extensively observed in the heart, where high levels of catecholamines cause enzyme inhibition, lipid peroxidation, energy depletion and myocardial necrosis. Catecholamines can be converted into o-quinones and undergo cyclization into aminochromes. This process can occur enzymatically or through autoxidation and involves the formation of free radicals. Aminochromes are highly reactive molecules that can cause oxidation of protein sulfhydryl groups and deamination catalysis, among other deleterious effects; in addition, inhibition of some enzymes has been also reported. We have studied the effects of isoproterenol oxidation products (IOP) on glutathione reductase (GR) activity in vitro. Isoproterenol (ISO) autoxidation was conducted at 37 degrees C in the dark, for 4 h at pH 7.0 and this process was monitored by UV spectrophotometry at both 340 and 490 nm. Addition of the autoxidized solution to GR in the presence of oxidized glutathione (GSSG) and NADPH showed that IOP inhibits GR in a competitive mode and that this effect increases during the 4 h incubation period. This inhibitory effect of IOP was partially prevented by the addition of reduced glutathione (GSH), L-cysteine and ascorbic acid to the reaction mixtures.  相似文献   

5.
 Expression in transgenic tobacco (Nicotiana tabacum L.) of a pea (Pisum sativum L.) GOR2 cDNA, encoding an isoform of glutathione reductase (GOR2), resulted in a 3- to 7-fold elevation of total foliar glutathione reductase (GR) activity. The enzyme encoded by GOR2 was confirmed to be extraplastidial in organelle fractionation studies and was considered most likely to be localised in the cytosol. A partial purification of GOR2 was achieved but a standard affinity chromatography step, using adenosine-2′,5′-diphosphate-Sepharose and often employed in the purification of GR from diverse sources, was unsuccessful with this isoform. Preparative isoelectric focussing was employed as part of the purification procedure of GOR2 and a complete separation from plastidial/mitochondrial glutathione reductase (GOR1) was achieved. The isoform GOR2 was shown to have a slower migration on non-denaturing polyacrylamide gels compared with GOR1 and properties typical of GR enzymes from plant sources. Received: 9 November 1999 / Accepted: 28 February 2000  相似文献   

6.
The effects of ketotifen, meloxicam, phenyramidol-HCl and gadopentetic acid on the enzyme activity of GR were studied using human erythrocyte glutathione reductase (GR) enzymes in vitro. The enzyme was purified 209-fold from human erythrocytes in a yield of 19% with 0.31?U/mg. The purification procedure involved the preparation of haemolysate, ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies. In the in vitro studies, IC(50) values and K(i) constants were 0.012?mM and 0.0008?±?0.00021?mM for ketotifen; 0.029?mM and 0.0061?±?0.00127?mM for meloxicam; 0.99?mM and 0.4340?±?0.0890?mM for phenyramidol-HCl; 138?mM and 28.84?±?4.69?mM for gadopentetic acid, respectively, showing the inhibition effects on the purified enzyme. Phenyramidol-HCl showed competitive inhibition, whereas the others showed non-competitive inhibition.  相似文献   

7.
Glutathione reductase (GR) (EC 1.6.4.2) was studied in crude and partially purified extracts from nonhardened (25/20 °C D/N) and hardened (5/5 °C D/N) spinach-leaf tissue. Crude extracts of hardened tissue showed a 66% increase in glutathione reductase activity over that of nonhardened tissue. The enzyme was purified by ammonium sulfate precipitation, Sephadex G-150 chromatography, 2′, 5′ ADP-Sepharose affinity chromatography, and DEAE-Sephadex A-50 ion-exchange chromatography. The partially purified enzyme from the two sources showed different kinetic characteristics, heat inactivation, freezing inactivation, and electrophoretic mobilities. Hardened leaves contain different forms of glutathione reductase than do nonhardened leaves. GR from hardened spinach has greater stability against freezing and a higher affinity for substrates at low temperature than does GR from nonhardened spinach.  相似文献   

8.
The effects of streptomycin sulfate, gentamicin sulfate, thiamphenicol, penicillin G, teicoplanin, ampicillin, cefotaxime, and cefodizime on the enzyme activity of glutathione reductase (GR) were studied using human and rat erythrocyte GR enzymes in in vitro and in vivo studies, respectively. The enzyme was purified 5,342-fold from human erythrocytes in a yield of 29% with 50.75 U/mg. The purification procedure involved the preparation of hemolysate, ammonium sulfate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies, and rat erythrocyte hemolysate was used in the in vivo studies. In the in vitro studies, I50 and K(i) values were 12.179 mM and 6.5123 +/- 4.1139 mM for cefotaxime, and 1.682 mM and 0.7446 +/- 0.2216 mM for cefodizime, respectively, showing the inhibition effects on the purified enzyme. Inhibition types were noncompetitive for cefotaxime and competitive for cefodizime. In the in vivo studies, 300 mg/kg cefotaxime and 1000 mg/kg cefodizime when administered to rats inhibited enzyme activity during the first 2h (p < 0.01). Cefotaxime led to increased enzyme activity at 4h (p < 0.05), but neither cefotaxime nor cefodizime had any significant inhibition or activation effects over 6 h (p > 0.05).  相似文献   

9.
Heavy metal pollution can arise from many sources and damage many organisms. Exposure to the metal ions can leads to a reduction in cellular antioxidant enzyme activities and lowers cellular defense against oxidative stress. In this study we have tested effects of the some metal ions on the purified bovine kidney cortex glutathione reductase (GR). Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effect on the enzyme. The obtained IC?? values of Cd2+, Ni2+, and Zn2+ are 0.027, 0.8, and 1 mM, respectively. Kinetic characterization of the inhibition is also investigated. Cd2+ inhibition is noncompetitive with respect to both oxidized glutathione (GSSG) (Ki(GSSG) 0.060 ± 0.005 mM) and NADPH (Ki(NADPH) 0.025 ± 0.002 mM). Ni2+ inhibition is noncompetitive with respect to GSSG (Ki(GSSG) 0.329 ± 0.016 mM) and uncompetitive with respect to NADPH (Ki(NADPH) 0.712 ± 0.047 mM). The effect of Zn2+ on GR activity is consistent with noncompetitive inhibition pattern when the varied substrate is the GSSG (Ki(GSSG) 0.091 ± 0.005 mM) and the NADPH (Ki(NADPH) 0.226 ± 0.01 mM), respectively. GR inhibition studies may be useful for understanding the mechanisms for oxidative damage associated with heavy metal toxicity.  相似文献   

10.
植物谷胱甘肽还原酶的生物学特性及功能   总被引:4,自引:0,他引:4  
谷胱甘肽还原酶(glutathione reductase,GR: EC 1.6.4.2)是植物体内一种重要的抗氧化酶类,其主要的生理功能是将氧化型谷胱甘肽(oxidaized glutathione disulfide,GSSG)还原成还原型谷胱甘肽(reduced glutathione,GSH),从而为活性氧(reactive oxygen species,ROS)的清除提供还原力,保护植物免受伤害.文中主要从Gr基因及其氨基酸序列的比较等方面分析了该酶的生物学特性;又对植物逆境响应,酶基因的缺失等方面的研究进行综述,阐释了GR酶在植物体内的作用原理、在逆境胁迫中抗逆表达调控途径及其作用机制;并对已有的研究成果进行总结分析,探讨了GR酶可能的起源及系统进化过程,为今后该酶的研究提供理论参考.  相似文献   

11.
Trypanothione reductase is an important target enzyme for structure-based drug design against Leishmania. We used homology modeling to construct a three-dimensional structure of the trypanothione reductase (TR) of Leishmania infantum. The structure shows acceptable Ramachandran statistics and a remarkably different active site from glutathione reductase(GR). Thus, a specific inhibitor against TR can be designed without interfering with host (human) GR activity.  相似文献   

12.
13.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

14.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

15.
The short-term action of thyroid hormone tri-iodothyronine (T3) was studied in vivo and in vitro on antioxidant enzyme activities in a teleost Anabas testudineus (Bloch). T3 injection in vivo (200 ng) in normal fish decreased the lipid peroxidation products and increased superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities after 30 min. T3 in vitro (10(-6) M) increased the antioxidant activities of catalase, glutathione reductase (GR), GPx and glutathione level after 15/30 min, except SOD, substantiating in vivo effects in normal fish. The results suggest a rapid regulatory effect of thyroid hormone in vivo and in vitro, in the removal of reactive oxygen species in A testudineus.  相似文献   

16.
Glutathione reductase (GR, E.C 1.6.4.2) is a flavoprotein that catalyzes NADPH-dependent reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH). The aim of this study was to investigate in vitro effects of phenolic compounds isolated from Sideritis brevibracteata on bovine kidney GR. The Sideritis species are widely found in nature and commonly used as medicinal plants. 7-O-glycosides of 8-OH-flavones (hypolaetin, isoscutellarein and 3'-hydroxy-4'-O-methylisoscutellarein) were isolated from aerial parts of Sideritis brevibracteata. These compounds inhibited bovine kidney cortex GR in a concentration-dependent manner. Kinetic characterization of the inhibition was also performed.  相似文献   

17.
Physarum polycephalum has a life cycle with several distinct phases that have different oxidation-reduction requirements. To investigate the relationship between the life cycle and the oxidation-reduction state, we isolated glutathione reductase (GR; EC 1.6.4.2) from Physarum microplasmodia. The enzyme was found to be a homodimer with a subunit M(r) of 49,000, and K(m) values for oxidized glutathione and NADPH of 40 and 28.6 microM, respectively. We then constructed a cDNA library from microplasmodium mRNA and cloned GR cDNA from the library. The isolated cDNA consisted of 1,475 bp encoding a polypeptide of 452 amino acids. The amino acid sequence similarity was about 50% with GRs of other organisms, and several conserved sequence motifs thought to be necessary for activity are evident in the Physarum enzyme. Escherichia coli transformed with an expression vector containing the cDNA synthesized the active GR. Genomic Southern blot analysis indicated that the GR gene is present as a single copy in the Physarum genome. Immunoblot analysis and RT-PCR analysis detected GR mRNA expression in the microplasmodium, plasmodium, and sclerotium, but not in the spore or flagellate. GR activity was low in the spore and flagellate. These results suggest that the glutathione oxidation-reduction system relates to the Physarum life cycle.  相似文献   

18.
Glutathione reductase (GR) plays a vital role in maintaining the antioxidant levels of the cytoplasm by catalyzing the reduction of glutathione disulfide to reduced glutathione, thereby using NADPH and flavin adenine dinucleotide as cofactors. Chromatiaceae have evolved an unusual homolog that prefers both a modified substrate (glutathione amide disulfide [GASSAG]) and a different cofactor (NADH). Herein, we present the crystal structure of the Chromatium gracile glutathione amide reductase (GAR) both alone and in complex with NAD+. An altered charge distribution in the GASSAG binding pocket explains the difference in substrate specificity. The NADH binding pocket of GAR differs from that of wild-type GR as well as that of a low active GR that was engineered to mimic NADH binding. Based on the GAR structure, we propose two attractive rationales for producing an efficient GR enzyme with NADH specificity.  相似文献   

19.
The homodimeric flavoenzyme glutathione reductase (GR) maintains high intracellular concentrations of the antioxidant glutathione (GSSG + NADPH + H(+) <--> 2 GSH + NADP(+)). Due to its central function in cellular redox metabolism, inhibition of GR from the malarial parasite Plasmodium falciparum represents an important approach to antimalarial drug development; therefore, the catalytic mechanism of GR from P. falciparum has been analyzed and compared with the human host enzyme. The reductive half-reaction is similar to the analogous reaction with GR from other species. The oxidative half-reaction is biphasic, reflecting formation and breakdown of a mixed disulfide between the interchange thiol and GSH. The equilibrium between the E(ox)-EH(2) and GSSG-GSH couples has been modeled showing that the Michaelis complex, mixed disulfide-GSH, is the predominant enzyme form as the oxidative half-reaction progresses; rate constants used in modeling allow calculation of an K(eq) from the Haldane relationship, 0.075, very similar to the K(eq) of the same reaction for the yeast enzyme (0.085) (Arscott, L. D., Veine, D. M., and Williams, C. H., Jr. (2000) Biochemistry 39, 4711-4721). Enzyme-monitored turnover indicates that E(FADH(-))(S-S). NADP(+) and E(FAD)(SH)(2).NADPH are dominant enzyme species in turnover. Since the individual forms of the enzyme differ in their susceptibility to inhibitors, the prevailing states of GR in the cell are of practical relevance.  相似文献   

20.
Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD+ and NADPH/NADP+. Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [γ-glutamylcysteine synthetase and glutathione synthetase].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号