首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the antioxidant activities of 21 species of marine algae were assessed via an ABTS free radical scavenging assay. The Ishige okamurae extract tested herein evidenced profound free radical scavenging activity, compared to that exhibited by other marine algae extracts. Thus, I. okamurae was selected for use in further experiments, and was partitioned with different organic solvents. Profound radical scavenging activity was detected in the ethyl acetate fraction, and the active compound was identified as the carmalol derivative, diphlorethohydroxycarmalol, which evidenced higher levels of activity than that of commercial antioxidants. Moreover, the protective effects of diphlorethohydroxycarmalol against H2O2-induced cell damage were evaluated. Intracellular reactive oxygen species (ROS) were overproduced as the result of the addition of H2O2, but this ROS generation was reduced significantly after diphlorethohydroxycarmalol treatment; this corresponds to a significant enhancement of cell viability against H2O2-induced oxidative damage. The inhibitory effects of diphlorethohydroxycarmalol against cell damage were determined via comet assay and Hoechst staining assay, and diphlorethohydroxycarmalol was found to exert a positive dose-dependent effect. These results clearly indicate that the diphlorethohydroxycarmalol isolated from I. okamurae exerts profound antioxidant effects against H2O2-mediated cell damage, and treatment with this compound may be a potential therapeutic modality for the treatment or prevention of several diseases associated with oxidative stress.  相似文献   

2.
In order to obtain natural antioxidants of good quality from a marine bioresource, we selected the brown marine alga, Ishige okamurae, which is an abundant and unutilized source of biomass and grows near Jeju Island, South Korea. An enzymatic extraction technique was used in order to determine the antioxidant effects of I. okamurae using commercially available food-grade digestive enzymes. In the evaluation of the radical scavenging capacity of the enzymatic extracts from I. okamurae using an electron spin resonance (ESR) spectrophotometer, all of the enzymatic extracts showed profound dose-dependent radical scavenging abilities. The majority of enzymatic extracts generated by proteases (except for Neutrase) had stronger hydrogen peroxide scavenging effects than the carbohydrase extract. In particular, the cytoprotective effects of the Kojizyme extract against H2O2 - induced DNA damage increased significantly with increasing extract concentrations in our comet assay tests. These results showed that I. okamurae may prove to be a valuable natural source of antioxidants.  相似文献   

3.
Considering the growing interest for mushrooms and the demand search of natural antioxidants sources, the aim of this study was to investigate the antioxidant properties of two edible widely used Boletus species, Boletus edulis, and Boletus auranticus, collected from Istra region in Croatia in late summer 2007. To evaluate the antioxidant properties and content of antioxidant compounds, scavenging capacity on DPPH˙, OH˙, and O2˙ radicals, reducing power and capacity to inhibit lipid peroxidation has been investigated. It is determined that content of total phenols (41.82 ± 0.08 mg gallic acid equivalent per gram of dry extract) was higher for B. edulis. Using high performance liquid chromatography/diode array detector analysis, the main antioxidant compound, variegatic acid, has been detected and quantified. 1,1-Diphenyl-2-picryl-hydrazyl-hydrate assay was used as a preliminary free radical–scavenging evaluation. By this assay, it has been found that B. edulis dry mushroom extract exhibits 50% of inhibition value at the extract concentration of 0.016 ± 0.0003 mg/ml. The extracts were capable of reducing iron(III) and, thus, are capable of donating electrons. Using electron paramagnetic resonance spin-trapping and spin-probing techniques, activity against relevant reactive species, ˙OH and O2˙ radical, was analyzed for both mushroom extracts. Both investigated extracts are determined as good inhibitors for ˙OH radical reduction, and both exhibited significant capacity for scavenging O2˙ radical and for that could help to prevent or meliorate oxidative damage. Only B. edulis extract prevents lipid peroxidation. Investigated mushroom extracts could represent easily accessible natural antioxidant resource.  相似文献   

4.
An antioxidant activity of the water-alcohol extracts of leaves of ten herbs from Western Siberia was studied. In vivo the capability of extracts to protect cells of Escherichia coli against the bacteriostatic action of H 2O2 and the influence of the extracts on the expression of the antioxidant gene katG coding catalase-hydroperoxidase I were investigated. In vitro the radical-binding activity with DPhPG· (1,1-diphenyl-2-picrylhydrazyl radical), the chelating capability with ferrozine, and total composition of flavonoids and tannins were determined. The extracts of Filipendula stepposa and Limonium gmelinii were characterized by the highest antioxidant activity. According to data, the test extracts could have an antioxidant effect on bacteria in different ways at once including the direct inhibition of ROS (reactive oxygen species), iron ion chelation and antioxidant gene induction.  相似文献   

5.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

6.
This study was conducted to examine the antioxidative and neuroprotective effects of Paeonia lactiflora pall (PLE). Total phenolic content of PLE was 89.65 mg of gallic acid equivalent per gram of PLE. IC50 values for reducing power, hydrogen peroxide scavenging activity, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were 297.57, 3.33, and 32.74 μg, respectively. The protective effect of PLE against H2O2-induced oxidative damage to PC12 cells was investigated by an 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay and lactate dehydrogenase (LDH) release assay. After 2 h of cell exposure to 0.5 mM H2O2, a marked reduction in cell survival was observed. However, this reduction was significantly prevented by 10–100 μg/ml of PLE. H2O2 also induced severe apoptosis of the PC12 cells, which was indicated by a flow cytometric analysis. Interestingly, the H2O2-stressed PC12 cells that had been incubated with PLE had greatly suppressed apoptosis. The results suggest that PLE could be a candidate for a new antioxidant against neuronal diseases.  相似文献   

7.
The free radical scavenging capacity of a wide range of plant oil extracts, principally those used in traditional European herbal medicine (with novel therapeutic potential for patients with degenerative disorders of the CNS), has been compared in vitro. The antioxidant capacity of individual plant extracts was determined via three complementary assay procedures, based on: (i) attenuation of the generation of ABTS√+ radical (quantitated colorimetrically), by a metmyoglobin catalyst/hydrogen peroxide system; (ii) inhibition of iodophenol enhanced chemiluminescence by a horseradish peroxidase/perborate/luminol system; (iii) protection of a target enzyme (human brain alanyl aminopeptidase, activity quantitated via fluorimetric assay) against oxidative damage by √OH or O√2 generated by Co60γ radiolysis. In assays (i) and (ii), only three plant extracts (cinnamon, pimento, bay) showed substantial antioxidant activity, although the two assays yielded quantitatively different values of antioxidant activity (Trolox equivalent values of 16–25 M (method ii) and 0.25–2.1 M (method (i)). None of the plant extracts investigated showed significant antioxidant protective activity against √OH or O√2 species in assay (iii). The data obtained thus demonstrate that the apparent antioxidant capacity of putative free radical scavenging agents depends entirely on the assay method utilized and particular free radical species generated. We therefore suggest that antioxidant capacity determined by a single assay method (particularly via competitive assay with ABTS√+) should be interpreted with some caution. This conclusion may be of particular potential importance in clinical chemistry, in view of the current interest in the assessment of the antioxidant status of tissues of patients with a variety of disorders.  相似文献   

8.
9.
10.
Potamogeton crispus L. (P. crispus) is the type of a widely distributed perennial herbs, which is rich in rhodoxanthin. In this research work, five antioxidant indexes in vitro were selected to study the antioxidant activity of rhodoxanthin from P. crispus (RPC). A model of hydrogen peroxide (H2O2) -induced oxidative damage in RAW264.7 cells was established to analyze the antioxidant effect and potential mechanism of RPC. The levels of ROS, MDA and the activities of oxidation related enzymes by H2O2 were determined by enzyme linked immunosorbent assay (ELISA). The mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 was measured by qRT-PCR assay. According to the results, RPC had free radical scavenging ability for 2, 2-diphenyl-1-trinitrohydrazine (DPPH), 2,2’-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical ion) (ABTS), hydroxyl radical and superoxide anion. RPC significantly decreased the level of MDA and ROS and LDH activity, while increased GSH level and activities of SOD, GSH−Px and CAT. It was showed that RPC could increase the mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 in RAW264.7 cells in a dose-dependently manner. In summary, RPC treatment could effectively attenuate the H2O2-induced cell damage rate, and the mechanism is related to the reduction of H2O2 induced oxidative stress and the activation of Nrf-2 pathway.  相似文献   

11.
Biologically and chemically useful hydrazinoimidazolines were evaluated as antioxidant and antihaemolytic agents. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH?), galvinoxyl radical (GOR), nitric oxide (NO) and hydrogen peroxide (H2O2) scavenging assays, ferric ions reducing power assay, and ex vivo model of rat erythrocytes exposed to 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AAPH) or H2O2 were used. The most potent DPPH? scavengers proved to be hydrazinoimidazolines 3, 2, and 4, revealing excellent antiradical effects – superior or comparable to that of all antioxidant standards used. Moreover, these molecules showed strong NO neutralising potencies – better to that of ascorbic acid (AA) (3), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (3 and 2), butylated hydroxytoluene (BHT) (3 and 2), and butylated hydroxyanisole (BHA) (3, 2, and 4). Compound 4 was also effective in GOR scavenging. The excellent scavenger of GOR, NO, and H2O2 proved to be structure 5, with the potency superior or comparable to the majority of antioxidant standards used. In turn, compound 9 was effective in H2O2 and GOR neutralisation. All hydrazinoimidazolines revealed the reducing power that is higher than BHT. Moreover, the protective effects of most test compounds on oxidatively stressed erythrocytes were observed. Some structure–activity relationships were disclosed. A significance of the primary hydrazino group on antioxidant effects was confirmed. The most likely DPPH? and GOR scavenging mechanisms for test compounds were propound. Among all the investigated molecules, hydrazinoimidazolines 5, 3, 2, 4, and 9, due to their excellent or good antiradical activities, can represent promising antioxidant candidates with prospective utility for prevention of diseases related to reactive oxygen/nitrogen species.  相似文献   

12.
Hairy root disease is caused by the infection of wounded higher plants with Agrobacterium rhizogenes. Transformation of tissues or plants with A. rhizogenes, and with rol genes, as well as hairy roots may produce alterations in the plant secondary metabolism. H2O2 and other ROS are involved as a signal in secondary metabolite production pathway and play a key role in plant defensive reactions. In this work, the effect of A. rhizogenes T-DNA on nicotine content, antioxidant enzymes activity, H2O2 production, pattern of peroxidase (POX) and superoxide dismutase (SOD) isozymes in hairy roots and regenerated plants were studied. Rise in SOD and POX activities in the transformed lines of TRa and TRb and in the resultant regenerated plants, also the decreased level of H2O2 in them, compared with the untransformed lines indicates that, the T-DNA genes expression of A. rhizogenes probably decreases H2O2 level by increasing the production of antioxidant enzymes. Decrees the level of H2O2 content in TRc line in spite of the similarity of antioxidant enzyme activity in comparison with normal root, indicate that A. rhizogenes activate other mechanisms except SOD and POX enzyme for reducing H2O2 level.  相似文献   

13.
Wang  Meng  Liu  Chao  Li  Qibin  Xu  Xiaoxiao 《Journal of molecular modeling》2015,21(11):1-10

The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as OH, OOH, (CH2=CH−O−O), and -•O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton−electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.

  相似文献   

14.
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O2?, superoxide radicals; OH, hydroxyl radical; HO2, perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H2O2, hydrogen peroxide and 1O2, singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of 1O2 and O2?. In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O2?. The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.  相似文献   

15.
16.
The antioxidant potential of N-acetylcysteine amide (NACA), also known as AD4, was assessed by employing different in vitro assays. These included reducing power, free radical scavenging capacities, peroxidation inhibiting activity through linoleic acid emulsion system and metal chelating capacity, as compared to NAC and three widely used antioxidants, α-tocopherol, ascorbic acid and butylated hydroxytoluene (BHT). Of the antioxidant properties that were investigated, NACA was shown to possess higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability and reducing power than NAC, at all the concentrations, whereas the scavenging ability of H2O2 differed with concentration. While NACA had greater H2O2 scavenging capacity at the highest concentration, NAC was better than NACA at lower concentrations. NAC and NACA had a 60% and 55% higher ability to prevent β-carotene bleaching, respectively, as compared to control. The chelating activity of NACA was more than 50% that of the metal chelating capacity of EDTA and four and nine times that of BHT and α-tocopherol, respectively. When compared to NACA and NAC; α-tocopherol had higher DPPH scavenging abilities and BHT and α-tocopherol had better β-carotene bleaching power. These findings provide evidence that the novel antioxidant, NACA, has indeed enhanced the antioxidant properties of NAC.  相似文献   

17.
Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH‐20 and silica gel columns when appropriate. The fractions were subjected to thin‐layer chromatography and liquid chromatography‐mass spectrometry analysis and evaluated for their total phenolic content (Folin‐Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH‐SY5Y cell line), and ability to generate H2O2 (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox‐active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H2O2 assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H2O2. Our results suggest that redox‐active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro‐oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.  相似文献   

18.
Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system.  相似文献   

19.
Three sulfated polysaccharide fractions (F1, F2, and F3) were isolated from Porphyra haitanesis, an important economic alga in China, through anion-exchange column chromatography and their in vitro antioxidant activities were investigated in this study. Galactose was the main sugar unit of the three fractions. The analytical results indicated that polysaccharide fractions from P. haitanesis had similar chemical components to porphyran from other species, but differed in their high sulfate content. The sulfate content of F1, F2 and F3 was 17.4%, 20.5% and 33.5% respectively. All three polysaccharide fractions showed antioxidant activities. They had strong scavenging effect on superoxide radical, and much weaker effect on hydroxyl free radical. Lipid peroxide in rat liver microsome was significantly inhibited, and H2O2 induced hemolysis of rat erythrocyte was partly inhibited by F1, F2 and F3. Among them, F3 showed strongest scavenging effect on superoxide radical; F2 had strongest effect on hydroxyl radical and lipid peroxide.  相似文献   

20.
In recently, there has been a great interest in natural antioxidants as bioactive components of food, nutraceuticals or potential drugs against several diseases. In our study, 88 extracts from various parts of plants from European Asteraceae and Cichoriaceae were assayed for radical scavenging activity by means of DPPH (1,1-diphenyl-2-picryl hydrazyl radical) test using the SIA (Sequential injection analysis) method developed for this purpose in our laboratory. DPPH radical scavenging activity of all tested plant extracts was evaluated according to the IC50 parameter. 29 extracts exhibited IC50 value lower than 0.1 mg/mL. The leaves of Leuzea carthamoides (IC50 = 0.046 mg/mL) were chosen as the most promising sample for a subsequent phytochemical study, which resulted in isolation of seven natural compounds, namely, 4′,5,7-trihydroxy-6-methoxyflavone (hispidulin) (1), 5, 7, 3′, 4′- tetrahydroxyflavanone (eriodictyol) (2), 3′,4′,5,7-pentahydroxy-6-methoxyflavonol (patuletin) (3), eriodictyol-7-β-glucopyranoside (4), 6-hydroxykaempferol-7-O-(6″-O-acetyl-β-D-glucopyranoside) (5), 4-hydroxybenzoic acid (6) and 3,4-dihydroxybenzoic acid (protocatechuic acid) (7). Antioxidant activity of the isolated compounds was evaluated by DPPH test and ferric reducing antioxidant power (FRAP) test and compared with trolox and quercetin. Both tests evaluated the flavonoid (5) as the most active antioxidant. This result was confirmed by comparison with known data concerning the structure/activity relationships of flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号