首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A halophilic, aerobic bacterium, designated GD01T, was isolated from a mangrove forest soil near the South China Sea. Cells of strain GD01T were Gram staining positive, oxidase positive, and catalase positive. The strain was rod shaped and motile by means of peritrichous flagella and produced ellipsoidal endospores. The strain was able to grow with NaCl at concentrations of 0.5–12 % (optimum 3–5 %, w/v), at temperatures of 20–50 °C (optimum 30 °C), and at pH 6.0–8.5 (optimum pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain GD01T formed a cluster with O. profundus DSM 18246T (96.4 % 16S rRNA gene sequence similarity), O. caeni KCTC 13061T (95.4 %), and O. oncorhynchi JCM 12661T (94.5 %). The G+C content of strain GD01T was 38.7 mol%. The major respiratory quinone was MK-7. The major cellular fatty acids (>5 %) were anteiso-C15:0, iso-C16:0 (13.7 %), anteiso-C17:0 (12.6 %), iso-C15:0 (9.9 %), iso-C14:0 (9.5 %), and C16:0 (5.0 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, glycolipid, four unknown lipids, and four unknown phospholipids. Based on phenotypic characteristics, chemotaxonomic features, and phylogenetic analysis based on 16S rRNA gene sequences, the strain was identified to represent a distinct novel species in the genus Oceanobacillus, and the name proposed is Oceanobacillus halophilum sp. nov. with type train GD01T (=CCTCC AB 2012863T = KCTC 33101T).  相似文献   

2.
Three Gram reaction positive, rod-shaped, moderately motile halophilic bacterial strains, designated YD3-56T, YD16, and YH29, were isolated from the sediments of Manasi and Aiding salt lakes in the Xinjiang region of China, respectively. The strains grew optimally at 30–37°C, pH 8–11, in the presence of 5–10% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains were closely related to members of the genus Oceanobacillus, exhibiting 99.1–99.2% similarity to O. kapialis KCTC 13177T, 99.2–99.3% to O. picturae KCTC 3821T, and 94.2–96% sequence similarity to other described Oceanobacillus species. SDS-PAGE of whole cell proteins preparations demonstrated that the strains exhibited high similarity to each other, but distinguished from O. kapialis KCTC 13177T and O. picturae KCTC 3821T (75%). DNA-DNA hybridization revealed that the similarity between the representative strain YD3-56T and O. kapialis KCTC 13177T was 35.3%, and the similarity between YD3-56T and O. picturae KCTC 3821T was 22.3%. Chemotaxonomic analysis of the strains showed menaquinone-7 was the predominant respiratory quinine. Major cellular fatty acids were anteiso-C15:0 and anteiso-C17:0. The polar lipid pattern for strain YD3-56T predominantly contained phosphatidylcholine, and trace to moderate amounts of phosphatidyl ethanolamine and hydroxy-phosphatidyl ethanolamine. The diamino acid in murein was meso-diaminopimelic acid. The DNA G+C content of the strains was 39.7–40.1 mol%. On the basis of these results, the three strains should be classified as a novel species of the genus Oceanobacillus, for which the name Oceanobacillus manasiensis sp. nov. has been proposed, with the type strain as YD3-56T (=CGMCC 1.9105T =NBRC 105903T).  相似文献   

3.
A novel pale-yellow-pigmented, moderately halophilic, facultatively alkaliphilic, non-motile, non-spore-forming, catalase- and oxidase-positive, obligately aerobic Gram-positive coccus, strain YIM-C678T was isolated from a saline soil sample collected from a hypersaline habitat in the Qaidam basin, northwest China. The organism grew at 4–37°C and pH 6.0–11.0, with optimum growth at 25°C and pH 8.0. Strain YIM-C678T grew optimally in the presence of 10–12% (w/v) NaCl and growth was observed in 1–25% (w/v) NaCl. The cell wall murein type was l-Lys-Gly5. Major cellular fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. Menaquinone 6 (MK-6) was the major respiratory quinone. The DNA G + C content was 46.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM-C678T belonged to the family Staphylococcaceae and was most closely related to the eight described species of the genus Salinicoccus with sequence similarities from 92.2 (S. luteus YIM 70202T) to 97.5% (S. kunmingensis YIM Y15T). The DNA–DNA relatedness between strain YIM-C678T and S. kunmingensis YIM Y15T was 35.4%. Chemotaxonomic data and 16S rRNA gene sequence analysis supported the affiliation of strain YIM-C678T with the genus Salinicoccus. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA–DNA hybridization data supported the view that the bacterium represents a novel species of the genus Salinicoccus, for which the name Salinicoccus salitudinis sp. nov. is proposed, with YIM-C678T (=DSM 17846 = CGMCC 1.6299) as the type strain.  相似文献   

4.
A thermophilic, rod-shaped, motile, Gram-positive, spore-forming bacterium strain 70BT was isolated from a geothermally active underground mine in Japan. The temperature and pH range for growth was 50–81°C (optimum 71°C) and 6.2–9.8 (optimum pH 7–7.5), respectively. Growth occurred in the presence 0–2% NaCl (optimum 1% NaCl). Strain 70BT could utilize glucose, fructose, mannose, mannitol, pyruvate, cellobiose and tryptone as substrates. Thiosulfate was used as electron acceptor. Major whole-cell fatty acids were iso-C15:0, C16:0 DMA (dimethyl acetal), C16:0 and anteiso-C15:0. The G+C mol% of the DNA was 44.2%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the closest relatives of strain 70BT were Thermosediminibacter oceani DSM 16646T (94% similarity) and Thermosediminibacter litoriperuensis DSM 16647 (93% similarity). The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain 70BT represents a novel species in a new genus, for which the name Thermovorax subterraneus gen. nov., sp. nov. is proposed. The type strain of Thermovorax subterraneus is 70BT (=DSM 21563 = JCM 15541).  相似文献   

5.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

6.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068T was able to grow with 1–20% (w/v) total salts (optimum, 6–9%), at pH values of 6.0–10.0 (optimum, pH 7.5) and a temperature range of 10–35°C (optimum, 25°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068T belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068T and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA–DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068T represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068T (=DSM 21183T =KCTC 13234T) as the type strain. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 071068T is EU925615.  相似文献   

7.
A novel alkaliphilic and moderate halophilic bacterium, designated strain K164T, was isolated from Keke Salt Lake in Qinghai, China. The strain grew with 2.0–20.0% (w/v) NaCl, at 4–50°C and pH 6.5–11.5, with an optimum of 8% (w/v) NaCl, 37°C and pH 10, respectively. The predominant respiratory quinone was menaquinone 6 (MK-6) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The genomic DNA G+C content was 50.16 mol. Phylogenetic analysis based on the full-length 16S rRNA gene sequence revealed that strain K164T was a member of the genus Salinicoccus. Strain K164T showed the highest similarity (98.4%) with Salinicoccus alkaliphilus AS 1.2691T and below 97% similarity with other recognized members of the genus in 16S rRNA gene sequence. Level of DNA–DNA relatedness between strain K164T and Salinicoccus alkaliphilus AS 1.2691T was 20.1%. On the basis of its phenotypic characteristics and the level of DNA–DNA hybridization, strain K164T is considered to represent a novel species of the genus Salinicoccus, for which the name Salinicoccus kekensis sp. nov. is proposed. The type strain is K164T (=CGMCC 1.10337T = DSM 23173T).  相似文献   

8.
A novel aerobe thermophilic endospore-forming bacterium designated strain AF/04T was isolated from thermal mud located in Euganean hot springs, Abano Terme, Padova, Italy. Strain AF/04T was Gram-positive, motile, rod-shaped, occurring in pairs, or filamentous. The isolate grew between 55 and 67°C (optimum 65°C) and at pH 6.0–7.5 (optimum pH 7.2). The strain was aerobic and grew on maltose, trehalose, and sodium acetate as sole carbon sources. The G + C content of DNA was 53.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain AF/04T falls within the genus Anoxybacillus. Levels of 16S rRNA gene sequence similarity between strain AF/04T and the type strains of recognized Anoxybacillus species ranged from 95 to 99%. Chemotaxonomic data (major isoprenoid quinone–menaquinone-7; major fatty acid iso-C15:0 and anteiso-C17:0) supported the affiliation of strain AF/04T to the genus Anoxybacillus. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequence analysis and DNA–DNA hybridization data, it was proposed that strain AF/04T (=DSM 17141T = ATCC BAA 1156T) should be placed in the genus Anoxybacillus as the type strain of a novel species, Anoxybacillus thermarum sp. nov.  相似文献   

9.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

10.
A bacterial strain 5YN5-8T was isolated from peat layer on Yongneup in Korea. Cells of strain 5YN5-8T were strictly aerobic, Gram-negative, coccobacilli, non-spore forming, and non-motile. The isolate exhibited optimal growth at 28°C, pH 7.0, and 0–1% NaCl. Results of 16S rRNA gene sequence analyses indicated a close relationship of this isolate to Acinetobacter calcoaceticus (97.8% similarity for strain DSM 30006T). It also exhibited 94.4–97.8% 16S rRNA gene sequence similarities to the validly published Acinetobacter species. The value for DNA-DNA hybridization between strain 5YN5-8T and other members of the genus Acinetobacter ranged from 16 to 28%. Predominant cellular fatty acids were C18:1 ω9c, summed feature 4 containing C15:0 iso 2-OH and/or C16:1 ω7c, and C16:0. The DNA G+C content was 43.9 mol%. Phylogenetic, phenotypic, and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Acinetobacter. The name Acinetobacter brisouii sp. nov. is proposed for the novel species, with 5YN5-8T (=KACC 11602T = DSM 18516T) as the type strain.  相似文献   

11.
A Gram-positive, rod-shaped, motile, endospore-forming bacterial strain, designated NB22T, was isolated from soil of a lettuce field in Kyonggi province, South Korea, and was characterized by using a polyphasic taxonomic approach. This novel isolate grew optimally at 30–37°C and pH 8–9. It grew in the presence of 0–4% NaCl (optimum, 1–2%). Comparative 16S rRNA gene sequence analysis showed that strain NB22T was closely related to members of the genus Bacillus and fell within a coherent cluster comprising B. siralis 171544T (98.1%) and B. korlensis ZLC-26T (97.3%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.4%. Strain NB22T had a genomic DNA G+C content of 36.3 mol% and the predominant respiratory quinone was MK-7. The peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, C14:0, and C16:0. These chemotaxonomic results supported the affiliation of strain NB22T to the genus Bacillus, and the low DNA-DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain NB22T from recognized Bacillus species. On the basis of the evidence presented, strain NB22T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus kyonggiensis sp. nov. is proposed. The type strain is NB22T (=KEMB 5401-267T =JCM 17569T).  相似文献   

12.
A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58T was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7–0.8 μm in width and 5.5–12 μm in length and produced terminal spherical spores of 1.2–1.6 μm in diameter with the mother cell swelling around 2 μm in diameter (drumstick-type morphology). Cells grew optimally at pH25°C 8.2–8.4 and temperature 50–52°C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO2 (both with or without H2) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, d-galactose, d-mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58T is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58T (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.The Genbank accession number for the 16S rRNA gene sequence of strain JW/WZ-YB58T is DQ221694.  相似文献   

13.
The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).  相似文献   

14.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

15.
A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).  相似文献   

16.
A novel Gram-negative, aerobic, moderate halophilic, and psychrotolerant bacterium, designated as strain H7T, was isolated from a hypersaline lake located in Skarvsnes, Antarctica. Cells were filaments with varying lengths. Coccoid bodies developed in old cultures. Growth occurred with 0.5–15% (w/v) NaCl (optimum, 5.8–7.0%), at pH 6.0–10.0 (optimum, pH 7.0–8.0), and at 10–28°C (optimum, 25°C). The strain had a G+C content of 34.9 mol%, which is within the range of 32–36 mol% reported for the genus Psychroflexus. Chemotaxonomic data (major respiratory quinone: MK-6; major fatty acids: aC15:0, iC16:0 3-OH, and aC15: 1 A) supported the classification of strain H7T within the genus Psychroflexus. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain H7T should be assigned to the genus Psychroflexus and has a homology with Psychroflexus salinarum (98.2%), P. sediminis (96.1%), P. torquis (95.2%), P. tropicus (95.8%), and P. gondwanense (92.2%). Strain H7 is not identified as P. salinarum because that DNA-DNA hybridization data were 8.5% between strain H7T and P. salinarum. The combination of phylogenetic analysis, DNA-DNA hybridization data, phenotypic characteristics, and chemotaxonomic differences supported the view that strain H7T represents a novel species of the genus Psychroflexus. The name Psychroflexus lacisalsi is proposed, and the type strain is H7T (=JCM 16231T =KACC 14089T).  相似文献   

17.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

18.
A Gram-negative, non-motile, non-endospore-forming bacterial strain, designated DPSR-4T, was isolated from a tidal flat sediment on the southern coast of Korea. Strain DPSR-4T grew optimally at 25–30°C, at pH 7.0–7.5 and in the presence of 2% (w/v) NaCl. A Neighbour-Joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain DPSR-4T clustered with Salinimonas chungwhensis BH030046T by a high bootstrap resampling value of 99.7%. Strain DPSR-4T exhibited 96.2% 16S rRNA gene sequence similarity to that of S. chungwhensis BH030046T and 93.7–96.6% sequence similarity to the sequences of type strains of Alteromonas species. Strain DPSR-4T contained Q-8 as the predominant ubiquinone and iso-C15:0 2-OH and/or C16:1 ω7c, C16:0 and C18:1 ω7c as the major fatty acids. The major polar lipids detected in strain DPSR-4T and S. chungwhensis KCTC 12239T were phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content was 53.4 mol%. Differential phenotypic properties and phylogenetic distinctiveness of strain DPSR-4T demonstrated that this strain is distinguishable from the sole recognized species of the genus Salinimonas, S. chungwhensis. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain DPSR-4T is considered to represent a novel species of the genus Salinimonas, for which the name Salinimonas lutimaris sp. nov. is proposed. The type strain is DPSR-4T (KCTC 23464T, CCUG 60743T).  相似文献   

19.
A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168T, was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 8.0) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0, and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA–DNA relatedness between strain JSM 089168T and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168T (=DSM 21085T =KCTC 13228T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 089168T is FJ425909.  相似文献   

20.
A Gram-negative, motile and rod-shaped bacterial strain, designated S7-3T, was isolated from a tidal flat sediment at Saemankum on the western coast of Korea. Phylogenetic analyses based on 16S rRNA gene and gyrB sequences showed that strain S7-3T belonged to the genus Shewanella, clustering with Shewanella decolorationis S12T. Strain S7-3T exhibited 98.8 % 16S rRNA gene sequence similarity and 96.8 % gyrB sequence similarity to S. decolorationis S12T, respectively. The 16S rRNA gene sequence similarity values between strain S7-3T and other members of the genus Shewanella were in the range of 93.0–98.0 %. Strain S7-3T contained simultaneously both menaquinones (MK) and ubiquinones (Q); the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The fatty acid profiles of strain S7-3T and S. decolorationis JCM 21555T were similar; major components were C17:1 ω8c, iso-C15:0 and iso-C15:0 2-OH and/or C16:1 ω7c. The DNA G+C content of strain S7-3T was 51.8 mol% and its mean DNA–DNA relatedness value with S. decolorationis JCM 21555T was 43 %. Differential phenotypic properties of strain S7-3T, together with the phylogenetic and genetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain S7-3T is considered to represent a novel Shewanella species, for which the name Shewanella seohaensis sp. nov. is proposed. The type strain is S7-3T (=KCTC 23556T = CCUG 60900T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号