首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation.  相似文献   

2.
Structural analysis of the hemoglobin (Hb) system of Delphinus delphis revealed a high globin multiplicity: HPLC–electrospray ionization-mass spectrometry (ESI-MS) analysis evidenced three major β (β1 16,022 Da, β2 16,036 Da, β3 16,036 Da, labeled according to their progressive elution times) and two major α globins (α1 15,345 Da, α2 15,329 Da). ESI-tandem mass and nucleotide sequence analyses showed that β2 globin differs from β1 for the substitution Val126 → Leu, while β3 globin differs from β2 for the isobaric substitution Lys65 → Gln. The α2 globin differs from the α1 for the substitution Ser15 → Ala. Anion-exchange chromatography allowed the separation of two Hb fractions and HPLC–ESI-MS analysis revealed that the fraction with higher pI (HbI) contained β1, β2 and both the α globins, and the fraction with lower pI (HbII) contained β3 and both the α globins. Both D. delphis Hb fractions displayed a lower intrinsic oxygen affinity, a decreased effect of 2,3-BPG and a reduced cooperativity with respect to human HbA0, with HbII showing the more pronounced differences. With respect to HbA0, either the substitution Proβ5 → Gly or the Proβ5 → Ala is present in all the cetacean β globins sequenced so far, and it has been hypothesized that position 5 of β globins may have a role in the interaction with 2,3-BPG. Regarding the particularly lowered cooperativity of HbII, it is interesting to observe that the variant human HbA, characterized by the substitution Lysβ65 → Gln (HbJ-Cairo) has a decreased cooperativity with respect to HbA0.  相似文献   

3.

Background  

In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP) by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA) and β (TSB) homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS) complex in Arabidopsis. On the other hand maize (Zea mays) expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB.  相似文献   

4.

Background  

The de novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success of these studies relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α, β-dehydroamino acids, especially α, β-dehydrophenylalanine (ΔPhe) comes in use for spawning well-defined structural motifs. Introduction of ΔPhe induces β-bends in small and 310-helices in longer peptide sequences.  相似文献   

5.

Background  

The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ) of tandem genes and are hypothesized to provide a molecular code for specifying the remarkably-diverse neural connections in the central nervous system. Like mammals, the coelacanth, a lobe-finned fish, contains a single protocadherin locus, also arranged into α, β and γ clusters. Zebrafish, however, possesses two protocadherin loci that contain more than twice the number of genes as the coelacanth, but arranged only into α and γ clusters. To gain further insight into the evolutionary history of protocadherin clusters, we have sequenced and analyzed protocadherin clusters from the compact genome of the pufferfish, Fugu rubripes.  相似文献   

6.

Background  

The basal metabolic rate (BMR) of a mammal of mass M is commonly described by the power function αM β where α and β are constants determined by linear regression of the logarithm of BMR on the logarithm of M (i. e., β is the slope and α is the intercept in regression analysis). Since Kleiber's demonstration that, for 13 measurements of BMR, the logarithm of BMR is closely approximated by a straight line with slope 0.75, it has often been assumed that the value of β is exactly 3/4 (Kleiber's law).  相似文献   

7.

Background  

Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.  相似文献   

8.

Background  

Capping protein (CP), a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform.  相似文献   

9.

Background  

The carbonic anhydrases (CAs) are involved in inorganic carbon utilization. They have been classified into six evolutionary and structural families: α-, β-, γ-, δ-, ε-, ζ- CAs, with β-CAs present in higher plants, algae and prokaryotes. The yeast Saccharomyces cerevisiae encodes a single copy of β-CA Nce103/YNL036W.  相似文献   

10.
Haemoglobins of five tilapiine species of the genera Oreochromis and Sarotherodon were investigated. By gel filtration chromatography a molecular weight of 67–69 kDa was determined for the tetrameric molecules which remained stable between pH 5.0 and pH 9.1. When subjected to sodium dodecyl sulphate-Urea-polyacrylamide gel electrophoresis (PAGE), haemoglobins of all species each were split into monomers of three different molecular weights ranging between 16.3 kDA and 17.6 kDa. Subsequently, isoelectric focusing separated haemolysates into about 23 differently charged tetrameric haemoglobins that were arranged in species-specific patterns. This diversity was shown to result from the occurrence of different types of globin chains. By acidic urea PAGE a total of seven major α-globins and five major β-globins were detected and species-characteristic chain variants were identified. To determine the globin chain composition of particular haemoglobin tetramers, 26 bands were isolated by isoelectric focusing and analysed by acidic urea PAGE. Tetramers consisted of doublets of identical α- and identical β-chains (α2β2, symmetric tetramers), or combinations of three (α2ββ*; αα*β2) or four (αα*ββ*) distinct chains (asymmetric tetramers). Finally, globin chains of Oreochromis niloticus were subjected to partial N-terminal amino acid sequencing. Differences in the composition of the three major β-chains could be shown, whereas the α-chains were N-terminally blocked. Accepted: 12 September 1997  相似文献   

11.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

12.

Background  

Despite the importance of β -strands as main building blocks in proteins, the propensity of amino acid in β -strands is not well-understood as it has been more difficult to determine experimentally compared to α -helices. Recent studies have shown that most of the amino acids have significantly high or low propensity towards both ends of β -strands. However, a comprehensive analysis of the sequence dependent amino acid propensities at positions between the ends of the β -strand has not been investigated.  相似文献   

13.

Background  

Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism.  相似文献   

14.
15.

Background  

Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis.  相似文献   

16.
Summary High-resolution electrophoresis of larval and adult hemoglobins of Xenopus laevis reveals stage-specific differences in the number and mobility of the globin chains. To establish the relationship between the globin chains and the previously described globin genes, the corresponding mRNAs were hybrid-selected from total erythroblast RNA by representative cDNA clones, and translated in vitro. Electrophoretic separation of the translation products allowed identification of a major and a minor -globin chain in the larval and adult stages. This also holds for the adult -chains, however in the larval stage a difference in abundance is only detectable in the -mRNAs, but not in the translation products, because they comigrate. The fact that major and minor globin chains can be assigned to genes, which are located in two clusters, suggests that the related genes are expressed coordinately, but at different levels. Analysis of the globin patterns during development reveals that transition from the larval to the adult globin chains coincides with metamorphosis. Moreover, there is evidence of two globin chains that are only expressed in early larval stages and hence might be related to additional larval -globin genes of as yet unknown genomic location.  相似文献   

17.

Background  

Polyhydroxyalkanoates (PHAs) can be degraded by many microorganisms using intra- or extracellular PHA depolymerases. PHA depolymerases are very diverse in sequence and substrate specificity, but share a common α/β-hydrolase fold and a catalytic triad, which is also found in other α/β-hydrolases.  相似文献   

18.

Background  

Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation.  相似文献   

19.

Background  

The tightly bound to DNA proteins (TBPs) is a protein group that remains attached to DNA with covalent or non-covalent bonds after its deproteinisation. The functional role of this group is as yet not completely understood. The main goal of this study was to evaluate tissue specific changes in the TBP distribution in barley genes and chromosomes in different phases of shoot and seed development. We have: 1. investigated the TBP distribution along Amy32b and Bmy1 genes encoding low pI α-amylase A and endosperm specific β-amylase correspondingly using oligonucleotide DNA arrays; 2. characterized the polypeptide spectrum of TBP and proteins with affinity to TBP-associated DNA; 3. localized the distribution of DNA complexes with TBP (TBP-DNA) on barley 1H and 7H chromosomes using mapped markers; 4. compared the chromosomal distribution of TBP-DNA complexes to the distribution of the nuclear matrix attachment sites.  相似文献   

20.

Background  

Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号