首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Langerhans cells (LC) are CD1a+E-cadherin (E-cad)+Birbeck granule+ but CD11b-CD36-factor XIIIa (FXIIIa)- members of the dendritic cell (DC) family. Evidence holds that LC originate from CD1a+CD14- rather than CD14+CD1a- progenitors, both of which arise from GM-CSF/TNF-alpha-stimulated CD34+ stem cells. The CD14+CD1a- progenitors, on the other hand, can give rise to a separate DC type characterized by its CD1a+CD11b+CD36+FXIIIa+E-cad-BG- phenotype (non-LC DC). Although GM-CSF/TNF-alpha are important for both LC and non-LC DC differentiation, TGF-beta 1 is thought to preferentially promote LC development in vitro and in vivo. However, the hemopoietic biology of this process and the nature of TGF-beta 1-responsive LC precursors (LCp) are not well understood. Here we show that CD14+ precursors in the presence, but not in the absence, of TGF-beta 1 give rise to a progeny that fulfills all major criteria of LC. In contrast, LC development from CD1a+ progenitors was TGF-beta 1 independent. Further studies revealed that CD14+ precursors contain a CD11b+ and a CD11b- subpopulation. When either subset was stimulated with GM-CSF/TNF-alpha and TGF-beta 1, only CD14+CD11b- cells differentiated into LC. The CD11b+ cells, on the other hand, acquired non-LC DC features only. The higher doubling rates of cells entering the CD14+ LCp rather than the CD1a+ LCp pathway add to the importance of TGF-beta 1 for LC development. Because CD14+CD11b- precursors are multipotent cells that can enter LC or macrophage differentiation, it is suggested that these cells, if present at the tissue level, endow a given organ with the property to generate diverse cell types in response to the local cytokine milieu.  相似文献   

2.
PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4+PD-1+ and CD8+PD-1+ lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8+PD1+ in PBMC when compared with controls. On the other hand, increased frequency of CD4+ and CD8+ T cells expressing PD-1+ accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-γ and higher levels of TGF-β were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.  相似文献   

3.
Based on the relative expression of CD11c and CD1a, we have identified three fractions of dendritic cells (DCs) in human peripheral blood, including a direct precursor of Langerhans cells (LCs). The first two fractions were CD11c+ DCs, comprised of a major CD1a+/CD11c+ population (fraction 1), and a minor CD1a-/CD11c+ component (fraction 2). Both CD11c+ fractions displayed a monocyte-like morphology, endocytosed FITC-dextran, expressed CD45RO and myeloid markers such as CD13 and CD33, and possessed the receptor for GM-CSF. The third fraction was comprised of CD1a-/CD11c- DCs (fraction 3) and resembled plasmacytoid T cells. These did not uptake FITC-dextran, were negative for myeloid markers (CD13/CD33), and expressed CD45RA and a high level of IL-3Ralpha, but not GM-CSF receptors. After culture with IL-3, fraction 3 acquired the characteristics of mature DCs; however, the expression of CD62L (lymph node-homing molecules) remained unchanged, indicating that fraction 3 can be a precursor pool for previously described plasmacytoid T cells in lymphoid organs. Strikingly, the CD1a+/CD11c+ DCs (fraction 1) quickly acquired LC characteristics when cultured in the presence of GM-CSF + IL-4 + TGF-beta1. Thus, E-cadherin, Langerin, and Lag Ag were expressed within 1 day of culture, and typical Birbeck granules were observed. In contrast, neither CD1a-/CD11c+ (fraction 2) nor CD1a-/CD11c- (fraction 3) cells had the capacity to differentiate into LCs. Furthermore, CD14+ monocytes only expressed E-cadherin, but lacked the other LC markers after culture in these cytokines. Therefore, CD1a+/CD11c+ DCs are the direct precursors of LCs in peripheral blood.  相似文献   

4.
5.
Thymic stromal lymphopoietin (TSLP) endows human blood‐derived CD11c+ dendritic cells (DCs) and Langerhans cells (LCs) obtained from human epidermis with the capacity to induce pro‐allergic T cells. In this study, we investigated the effect of TSLP on umbilical cord blood CD34+‐derived LC‐like cells. These cells are often used as model cells for LCs obtained from epidermis. Under the influence of TSLP, both cell types differed in several ways. As defined by CD83, CD80 and CD86, TSLP did not increase maturation of LC‐like cells when compared with freshly isolated LCs and epidermal émigrés. Differences were also found in the production of chemokine (C‐C motif) ligand (CCL)17. LCs made this chemokine only when primed by TSLP and further stimulated by CD40 ligation. In contrast, LC‐like cells released CCL17 in response to CD40 ligation, irrespective of a prior treatment with TSLP. Moreover, the CCL17 levels secreted by LC‐like cells were at least five times higher than those from migratory LCs. After maturation with a cytokine cocktail consisting of tumour necrosis factor‐α, interleukin (IL)‐1β, IL‐6 and prostaglandin (PG)E2 LC‐like cells released IL‐12p70 in response to CD40 ligation. Most importantly and in contrast to LC, TSLP‐treated LC‐like cells did not induce a pro‐allergic cytokine pattern in helper T cells. Due to their different cytokine secretion and the different cytokine production they induce in naïve T cells, we conclude that one has to be cautious to take LC‐like cells as a paradigm for ‘real’ LCs from the epidermis.  相似文献   

6.
7.
We studied whether abnormalities in epidermal APC could be responsible for intracutaneous T cell activation in atopic dermatitis (AD). In the absence of added Ag, patients' peripheral blood T cells demonstrated significantly increased proliferation to their autologous lesional epidermal cells (mean +/- SEM = 19,726 +/- 9,754 cpm [3H]TdR uptake) relative to epidermal cells from uninvolved AD skin (2179 +/- 697 cpm) (n = 10) (p = 0.0001, log transformed data). AD T cell proliferative responses to autologous epidermal cells were dependent upon cells expressing HLA-DR, CD1a, and CD36, and not upon keratinocytes or their cytokines. Ultrastructurally, these cells ranged from typical Langerhans cells to indeterminate cells with irregular nuclear contours. Enriched populations of lesional AD Langerhans cells were highly stimulatory for autologous T cells, whereas equal numbers of Langerhans cells from non atopic epidermis were poor stimulators, even at high concentrations. The dermal perivascular dendritic cell markers CD36 and CD1b, not usually present on normal epidermal APC, were expressed by 40 and 60% of lesional AD CD1a+ epidermal Langerhans cells, respectively. Addition of anti-CD1b to cocultures of AD epidermal cells and autologous T lymphocytes augmented T cell activation, suggesting that the expression of CD1b by AD Langerhans cells may represent over expression of a molecule functionally linked to the enhanced T cell stimulatory capacity of these cells. Thus, stimulatory signals for T cells contained within AD epidermis are carried by cells in an abnormal differentiation state as indicated by expression of phenotypic characteristics of both epidermal and dermal antigen presenting cells (HLA-DR+, CD1a+, CD1b+, CD36+). We propose that activation of autologous T cells by an altered cutaneous APC population may represent a mechanism for the hyperactive and disordered cell-mediated immune response that characterizes the dermatitic lesions of AD.  相似文献   

8.
The effector immune mechanisms underlying peanut-induced anaphylaxis remain to be fully elucidated. We investigated the relative contribution of Igs, mast cells (MCs), and FcepsilonRI in the elicitation of anaphylaxis in a murine model. Assessment of peanut hypersensitivity reactions was performed clinically and biologically. Our data show that wild-type (WT; C57BL/6 strain) mice consistently developed severe anaphylaxis (median clinical score: 3.5/5), an approximately 8 degrees C drop in core body temperature, and significantly increased plasma levels of histamine and leukotrienes. CD40 ligand- and B cell-deficient mice presented evidence of allergic sensitization as demonstrated by production of Th2-associated cytokines by splenocytes and a late-phase inflammatory response that were both indistinguishable to those detected in WT mice. However, CD40 ligand- and B cell-deficient mice did not exhibit any evidence of anaphylaxis. Our data also show that MC-deficient (Kit(W)/Kit(W-v)) mice did not suffer, unlike their littermate controls, anaphylactic reactions despite the fact that serum levels of peanut-specific Igs were similarly elevated. Finally, FcepsilonRI-deficient mice experienced anaphylactic responses although to a significantly lesser degree than those observed in WT mice. Thus, these data demonstrate that the presence of peanut-specific Abs along with functional MCs comprise a necessary and sufficient condition for the elicitation of peanut-induced anaphylaxis. That the absence of FcepsilonRI prevented the development of anaphylaxis only partially insinuates the contribution of an IgE-independent pathway, and suggests that strategies to impair MC degranulation may be necessary to improve the efficacy of anti-IgE therapy.  相似文献   

9.
Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.  相似文献   

10.
Langerhans cells (LC) are likely initial targets for HIV following sexual exposure to virus and provide an efficient means for HIV to gain access to lymph node T cells. The purpose of this study was to examine the nature of the CD4(+) T cell that becomes infected by HIV-infected LC. We infected human LC within tissue explants ex vivo and then, 3 days later, cocultured HIV-infected LC with different subsets of autologous CD4(+) T cells. Using multicolor flow cytometric analyses of LC-CD4(+) T cell cocultures, we documented that HIV-infected LC preferentially infected memory (as compared with naive) CD4(+) T cells. Proliferating and HIV-infected CD4(+) memory T cells were more frequently detected in conjugates of LC and autologous CD4(+) T cells, suggesting that T cells become activated and preferentially get infected through cluster formation with infected LC, rather than getting infected with free virus produced by single HIV-infected LC or T cells. p24(+) Memory CD4(+) T cells proliferated well in the absence of superantigen; by contrast, p24(+) T cells did not divide or divided only once in the presence of staphylococcal enterotoxin B, suggesting that virus production was rapid and induced apoptosis in these cells before significant proliferation could occur. These results highlight that close interactions between dendritic cells, in this case epidermal LC, and T cells are important for optimal HIV replication within specific subsets of CD4(+) T cells. Disrupting cluster formation between LC and memory CD4(+) T cells may be a novel strategy to interfere with sexual transmission of HIV.  相似文献   

11.
IgE-mediated mast cell activation induces Langerhans cell migration in vivo   总被引:2,自引:0,他引:2  
Langerhans cells and mast cells are both resident in large numbers in the skin and act as sentinel cells in host defense. The ability of mast cells to induce Langerhans cell migration from the skin to the draining lymph node in vivo was examined. Genetically mast cell-deficient (W/Wv) mice and control mice were sensitized with IgE Ab in the ear pinna. Seven to 14 days later, mice were challenged with Ag i.v. After a further 18-24 h, epidermal sheets and draining auricular lymph nodes were examined using Langerin/CD207 immunostaining. In mast cell-containing mice, a significant decrease in the number of Langerhans cells was observed at epidermal sites of mast cell activation. A significant increase in total cellularity and accumulation of Langerin-positive dendritic cells was observed in the auricular lymph nodes, draining the sites of IgE-mediated mast cell activation. These changes were not observed in W/Wv mice, but were restored by local mast cell reconstitution. Treatment of mast cell-containing mice with the H2 receptor antagonist cimetidine significantly inhibited the observed IgE/Ag-induced changes in Langerhans cell location. In contrast, Langerhans cell migration in response to LPS challenge was not mast cell dependent. These data directly demonstrate the ability of mast cells to induce dendritic cell migration to lymph nodes following IgE-mediated activation in vivo by a histamine-dependent mechanism.  相似文献   

12.
13.
Langerhans cells (LCs) are a subset of dendritic cells (DCs) that reside within epidermal and mucosal tissue. Because of their location, LCs are potentially the first cells to encounter human immunodeficiency virus (HIV) during sexual transmission. We report that LCs purified from CD34(+)-derived DCs can facilitate the transinfection of target cells but only after activation. Virions were observed in an intracellular compartment that contains several tetraspanins, in addition to the unique LC markers langerin and CD1a. This reveals that the trafficking of HIV within LCs is reminiscent of that which occurs in mature monocyte-derived DCs and that it varies with the activation state of the cell. The observation that activated LCs can mediate transinfection suggests a potential role for these cells in the known increase in HIV transmission associated with sexually transmitted infections that would cause inflammation of the genital lining.  相似文献   

14.
The present study demonstrates that a consistent percentage (over 30%) of freshly isolated human Langerhans cells express the CD23 moiety. This was achieved employing a pre-embedding immunoelectronmicroscopy, using the peroxidase reaction product as a marker, assay on suspended trypsinized epidermal cells isolated from normal human skin. The possibility that the CD23 molecule on the surface of Langerhans cells could play a role in the antigen-presentation function of dendritic epidermal cells to T lymphocytes is proposed.  相似文献   

15.
Dendritic cells (DCs) are thought to mediate HIV-1 transmission but it is becoming evident that different DC subsets at the sites of infection have distinct roles. In the genital tissues, two different DC subsets are present: the Langerhans cells (LCs) and the DC-SIGN(+)-DCs. Although DC-SIGN(+)-DCs mediate HIV-1 transmission, recent data demonstrate that LCs prevent HIV-1 transmission by clearing invading HIV-1 particles. However, this protective function of LCs is dependent on the function of the C-type lectin Langerin: blocking Langerin function by high virus concentrations enables HIV-1 transmission by LCs. Here, we will discuss the molecular mechanisms involved in HIV-1 transmission and viral clearance. A better understanding of these processes is crucial to understand and develop strategies to combat transmission.  相似文献   

16.
The small chemical vacuolin-1 induces rapid formation of large vacuoles in various cell types. In epithelial cells, vacuolin-1 has been shown to inhibit Ca2+ ionophore-induced exocytosis depending on experimental conditions used but had no effect on repair of damaged membranes. However, it is not known whether vacuolin-1 could inhibit exocytosis induced by immunoreceptor triggering in professional secretory cells and whether there is any correlation between effect of vacuolin-1 on exocytosis and membrane repair in such cells. Here we show that in rat basophilic leukemia (RBL-2H3) cells activated by the high-affinity IgE receptor (FcεRI) triggering vacuolin-1 enhanced exocytosis. Under identical conditions of activation, vacuolin-1 inhibited exocytosis in mouse bone marrow-derived mast cells (BMMCs). This inhibition was not reflected by decreased phosphorylation of the FcεRI α and β subunits, linker for activation of T cells, non-T cell activation linker, Akt and MAP kinase Erk, and uptake of extracellular Ca2+, indicating that early activation events are not affected. In both cell types vacuolin-1 led to formation of numerous vacuoles, a process which was inhibited by bafilomycin A1, an inhibitor of vacuolar H+-ATPase. Thapsigargin- or Ca2+ ionophore A23187-induced exocytosis also showed different sensitivity to the inhibitory effect of vacuolin-1. Pretreatment of the cells with vacuolin-1 followed by permeabilization with bacterial toxin streptolysin O enhanced Ca2+-dependent repair of plasma membrane lesions in RBL-2H3 cells but inhibited it in BMMCs. Our data indicate that lysosomal exocytosis exhibits different sensitivity to vacuolin-1 depending on the cell type analyzed and mode of activation. Furthermore, our results support the concept that lysosomal exocytosis is involved in the repair of injured plasma membranes.  相似文献   

17.
Stimulation of rat serosal mast cells in vitro with compound 48/80, a degranulating agent, resulted in an immediate increase in binding of low density lipoproteins (LDL) to the stimulated mast cells. The increase in binding was dose-dependent and closely followed the increase in histamine release, i.e., the exocytosis of mast cell granules. It could be demonstrated that the LDL were bound to exocytosed secretory granules which remained cell-associated. During the recovery period the granule-bound LDL were internalized by the mast cells along with the granules. A single stimulation of mast cells rendered their cytoplasm to be filled with granular material showing positive staining for both apoB and neutral lipid. This change was accompanied by a 30-fold increase in the cellular content of cholesteryl esters. Thus, rat serosal mast cells possess a specific mechanism for uptake of LDL that is activated by stimuli that lead to degranulation, the result being massive uptake of LDL by stimulated mast cells during recovery from degranulation.  相似文献   

18.
Sustained Ag expression by human dendritic cells (DCs) is an attractive means of optimizing Ag presentation for stimulating durable cellular immunity. To establish proof of principle, we used Langerhans cell (LC) progeny of retrovirally transduced CD34(+) hemopoietic progenitor cells to stimulate responses against the HLA-A*0201-restricted influenza matrix peptide (fluMP). Retroviral transduction of CD34(+) hemopoietic progenitor cells, during pre-expansion by thrombopoietin, c-kit ligand, and FLT-3 ligand, on recombinant fibronectin, but in the absence of FCS, resulted in gene expression by 20-30% of the LCs. Expression persisted at least 28 days, with little decline (<30%) over that time. Retroviral transduction did not alter the phenotype or potent immunogenicity of normal mature DCs. FluMP-transduced LCs stimulated a 130-fold expansion of T cells reactive with HLA-A*0201-fluMP tetramers, even at LC:T cell ratios of 1:100-150 and lower, whereas fluMP-pulsed LCs stimulated only a 30-fold expansion. FluMP-transduced LCs also stimulated higher IFN-gamma secretion (100-123 spot-forming cells/10(5) CD8(+) T cells) than did fluMP-pulsed LCs (10-91 spot-forming cells/10(5) CD8(+) T cells). CD8(+) T cells stimulated by transduced LCs did not react preferentially with retrovirally transduced targets, indicating that the responses targeted only the immunizing influenza and not the retroviral vector Ags, even though these could have provided nonspecific helper epitopes presented by the transduced LCs. These data demonstrate that gene-transduced LCs maintain the activated phenotype as well potent immunogenicity typical of mature DCs. LCs genetically modified to express fluMP are also more potent stimulators of Ag-specific CD8(+) T cell responses than are peptide-pulsed LCs.  相似文献   

19.
Previous studies have revealed that the RE strain of HSV type 1 (HSV-1) induces a tissue-destructive inflammatory response in the mouse cornea that is mediated by CD4 T lymphocytes, whereas the KOS strain of HSV-1 preferentially activates CD8 T lymphocytes in the cornea. Langerhans cells (LC) normally reside only at the periphery of the cornea but can migrate centripetally after HSV-1 infection. We studied the relative contribution of LC to the corneal inflammation induced by the KOS and RE strains of HSV-1. Ten days after infection, the central one-third of RE HSV-1-infected corneas contained an average of 5.7 LC/high-power field compared with 0.6 LC/high-power field in KOS-infected corneas. We hypothesized that the increased density of LC in RE HSV-1-infected corneas at the time of T lymphocyte infiltration contributed to the preferential activation of CD4 T lymphocytes in these corneas. To test this hypothesis, we gave mice a low dose of UV-B corneal irradiation (150 mJ/cm2) 1 day before infection with HSV-1. UV-B irradiation effectively prevented the migration of LC into the central cornea when measured 10 or 21 days after corneal infection with either HSV-1 strain. UV-B corneal irradiation had no effect on the CTL response to HSV-1 Ag in the regional lymph nodes after corneal infection with KOS or RE HSV-1. The delayed-type hypersensitivity response induced by both strains of virus, when measured 8 and 14 days after corneal infection, was significantly reduced by UV-B irradiation. UV-B irradiation significantly reduced the incidence (p = 0.0023) and severity (p = 0.0008) of corneal stromal disease induced by RE HSV-1 but did not significantly affect the stromal disease induced by KOS HSV-1. To distinguish between the effect of UV-B treatment on the afferent and efferent arms of the Ir in mice, we administered UV-B treatment to one eye, followed 24 h later by RE HSV-1 infection of both eyes. These mice developed a normal delayed-type hypersensitivity response, and stromal inflammation developed normally in the untreated eye. However, stromal inflammation was significantly reduced in the treated eye. Our findings suggest that LC play a critical role in the activation of HSV-reactive CD4 T lymphocytes in the cornea. Moreover, the type of corneal inflammation induced by different strains of HSV-1 may reflect their differential capacity to induce LC migration into the central cornea.  相似文献   

20.
CD1 and CD1-restricted T cells in infections with intracellular bacteria   总被引:7,自引:0,他引:7  
Glycolipid-specific, CD1a-, b- and c-dependent cytotoxic T cells have recently been shown to be involved in the host response against tuberculosis. These CD1 molecules 'sample' mycobacterial glycolipids from different intracellular sites in the infected cell. Additionally, upon microbial encounter, CD1d-dependent natural killer T cells promptly produce cytokines and perform regulatory activities. Here, we discuss the intracellular localization of CD1 molecules and mycobacterial lipids and the role of CD1-mediated T-cell responses in mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号