首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

2.
3.
Pulmonary artery endothelial cells (PAEC) were exposed to normoxia or hypoxia (0% O(2)-95% N(2)-5% CO(2)) in the presence and absence of calpain inhibitor I or calpeptin, after which endothelial nitric oxide synthase (eNOS) activity and protein content were assayed. Exposure to hypoxia decreased eNOS activity but not eNOS protein content. Both calpain inhibitor I and calpeptin prevented the hypoxic decrease of eNOS activity. Incubation of calpain with total membrane preparations of PAEC caused dose-dependent decreases in eNOS activity independent of changes in eNOS protein content. Exposure of PAEC to hypoxia also caused time-dependent decreases of heat shock protein 90 (HSP90) that were prevented by calpain inhibitor I and calpeptin. Moreover, the HSP90 content in anti-eNOS antibody-induced immunoprecipitates from hypoxic PAEC lysates was reduced, and repletion of HSP90 reversed the decrease of eNOS activity in these immunoprecipitates. Incubation of PAEC with a specific inhibitor of HSP90 (geldanamycin) mimicked the hypoxic decrease of eNOS activity. These results indicate that the hypoxia-induced reduction in eNOS activity in PAEC is due to a decrease in HSP90 caused by calpain activation.  相似文献   

4.
We investigated nitric oxide (*NO)-mediated proteosomal activation in bovine aortic endothelial cells (BAEC) treated with varying fluxes of hydrogen peroxide (H(2)O(2)) generated from glucose/glucose oxidase (Glu/GO). Results revealed a bell-shaped *NO signaling response in BAEC treated with Glu/GO (2-20 mU/ml). GO treatment (2 mU/ml) enhanced endothelial nitric oxide synthase (eNOS) phosphorylation and *NO release in BAEC. With increasing GO concentrations, phospho eNOS and *NO levels decreased. Bell-shaped responses in proteasomal function and *NO induction were observed in BAEC treated with varying levels of GO (2-10 mU/ml). Proteosomal activation induced in GO-treated BAEC was inhibited by N(omega)-nitro-L-arginine-methyl ester pretreatment, suggesting that *NO mediates proteasomal activation. Intracellular *NO induced by H(2)O(2) was detected by isolating the 4,5-diaminoflourescein (DAF-2)/*NO/O(2)-derived "green fluorescent product" using the high-performance liquid chromatography-fluorescence technique, a more rigorous and quantitative methodology for detecting the DAF-2/*NO/O(2) reaction product. Finally, the relationships between H(2)O(2) flux, proteasomal activation/inactivation, endothelial cell survival, and apoptosis are discussed.  相似文献   

5.
We recently demonstrated that deficiency in endothelial nitric oxide synthase (eNOS) results in congenital septal defects and postnatal heart failure. The aim of this study was to investigate the role of eNOS in cardiomyocyte proliferation and maturation during postnatal development. Cultured eNOS knockout (eNOS–/–) cardiomyocytes displayed fewer cells and lower bromodeoxyuridine (BrdU) incorporation in vitro compared with wild-type (WT) cardiomyocytes (P < 0.05). Treatment with the nitric oxide (NO) donor diethylenetriamine NONOate increased BrdU incorporation and cell counts in eNOS–/– cardiomyocytes (P < 0.05). Inhibition of nitric oxide synthase activity using NG-nitro-L-arginine methyl ester decreased the level of BrdU incorporation and cell counts in WT cardiomyocytes (P < 0.05). Vascular endothelial growth factor (VEGF) increased the level of BrdU incorporation in cultured WT cardiomyocytes in a dose- and time-dependent manner (P < 0.05). Conversely, VEGF did not alter BrdU incorporation in eNOS–/– cardiomyocytes (P = not significant). Furthermore, deficiency in eNOS significantly decreased BrdU labeling indexes in neonatal hearts in vivo. Although WT hearts displayed a rapid decrease in atrial natriuretic peptide (ANP) expression in the first week of neonatal life, ANP expression in eNOS–/– hearts remain elevated. Our study demonstrated that NO production from eNOS is necessary for postnatal cardiomyocyte proliferation and maturation, suggesting that eNOS plays an important role during postnatal heart development. proliferation; heart development  相似文献   

6.
7.
Human endothelial nitric oxide synthase (eNOS) plays a crucial role in maintaining blood pressure homeostasis and vascular integrity. eNOS gene expression may be upregulated by a signaling pathway, including PI-3Kgamma--> Jak2--> MEK1 --> ERK1/2--> PP2A. It remains unclear whether other mitogen-activated protein kinase (MAPK) family members, such as JNK, p38 kinase, and ERK5/BMK1, also modulate eNOS gene expression. Our purpose, therefore, is to shed light on the effect of the p38 MAPK signaling pathway on the regulation of eNOS promoter activity. The results showed that a red fluorescent protein reporter gene vector containing the full length of the human eNOS promoter was first successfully constructed, expressing efficiently in ECV304 cells with the characteristics of real time observation. The wild-types of p38alpha, p38beta, p38gamma, and p38delta signal molecules all markedly downregulated promoter activity, which could be reversed by their negative mutants, including p38alpha (AF), p38beta (AF), p38gamma (AF), and p38delta (AF). Promoter activity was also significantly downregulated by MKK6b (E), an active mutant of an upstream kinase of p38 MAPK. The reduction in promoter activity by p38 MAPK could be blocked by treatment with a p38 MAPK specific inhibitor, SB203580. Moreover, the activation of endogenous p38 MAPK induced by lipopolysaccharide resulted in a prominent reduction in promoter activity. These findings strongly suggest that the activation of the p38 MAPK signaling pathway may be implicated in the downregulation of human eNOS promoter activity.  相似文献   

8.
Similar to infants born with persistent pulmonary hypertension of the newborn (PPHN), there is an increase in circulating endothelin-1 (ET-1) and decreased endothelial nitric oxide synthase (eNOS) gene expression in an ovine model of PPHN. These abnormalities lead to vasoconstriction and vascular remodeling. Our previous studies have demonstrated that reactive oxygen species (ROS) levels are elevated in the pulmonary arteries from PPHN lambs and that ET-1 increases ROS production in pulmonary arterial smooth muscle cells (PASMC) in culture. Thus the objective of this study was to determine whether there was a feedback mechanism between the ET-1-mediated increase in ROS in fetal PASMC (FPASMC) and a decrease in eNOS gene expression in fetal pulmonary arterial endothelial cells (FPAEC). Our results indicate that ET-1 increased H2O2 levels in FPASMC in an endothelin A receptor-dependent fashion. This was observed in both FPASMC monoculture and in cocultures of FPASMC and FPAEC. Conversely, ET-1 decreased H2O2 levels in FPAEC monoculture in an endothelin B receptor-dependent fashion. Furthermore, ET-1 decreased eNOS promoter activity by 40% in FPAEC in coculture with FPASMC. Promoter activity was restored in the presence of catalase. In FPAEC in monoculture treated with 0-100 microM H2O2, 12 microM had no effect on eNOS promoter activity, but it increased eNOS protein levels by 50%. However, at 100 microM, H2O2 decreased eNOS promoter activity and protein levels in FPAEC by 79 and 40%, respectively. These data suggest a role for smooth muscle cell-derived H2O2 in ET-1-mediated downregulation of eNOS expression in children born with PPHN.  相似文献   

9.
Excised leaves of kidney bean (Phaseolus vulgaris) were used to investigate the mechanism of NO generation under UV-B stress. We showed that two signaling molecules, NO and H2O2, were produced in the irradiated leaves. NO release was blocked by LNNA, an inhibitor of NOS. Application of CAT (EC 1.11.1.6) not only effectively eliminated H2O2 in the leaves, but also inhibited the activity of NOS and the emission of NO. In contrast, treatment with exogenous H2O2 increased both of those events. Therefore, we suggest that, under UV-B stress, NO production is mediated by H2O2 through greater NOS activity.  相似文献   

10.
Insulin-induced vasodilatation in vivo has been attributed to the activation of the endothelial nitric oxide (NO) synthase (eNOS). The present study addressed the effects of insulin on the activity and expression of eNOS in native and cultured endothelial cells. Insulin applied to native porcine aortic endothelial cells elicited the tyrosine phosphorylation of the insulin receptor and receptor substrate, the subsequent activation of phosphatidylinositol 3-kinase (PI 3-K), Akt (protein kinase B), and ERK1/2. Insulin did not activate eNOS in cultured endothelial cells nor relax endothelium-intact arterial segments. However, 4h after application of insulin to native endothelial cells eNOS mRNA was increased 2-fold. A comparable increase in eNOS protein was detected after 18-24h and associated with an increase in intracellular cyclic GMP. In native endothelial cells, insulin enhanced the DNA-binding activity of Sp1 and AP-1, but not that of NF-kappaB. The insulin-induced increase in eNOS expression was prevented by wortmannin as well as by AP-1 decoy oligonucleotides. The MEK1 inhibitor, PD 98059, also enhanced eNOS expression in native and cultured endothelial cells, an effect which was independent of ERK1/2 and associated with an increase in the DNA-binding activity of AP-1 and Sp1. These results demonstrate that insulin activates multiple signalling pathways in endothelial cells but does not acutely activate eNOS. Insulin however enhances eNOS mRNA and protein by a mechanism involving the combined activation of a PI 3-K- and AP-1-dependent pathway.  相似文献   

11.
12.
13.
Hyperglycemia is considered a primary cause of diabetic vascular complications. A hallmark of vascular disease is endothelial cell dysfunction characterized by diminished nitric-oxide (NO)-dependent phenomena such as vasodilation, angiogenesis, and vascular maintenance. This study was designed to investigate the effects of a high level of D-glucose on endothelial NO response, oxidative stress, and glucose metabolism. Bovine aortic endothelial cells (BAECs) were pretreated with a high concentration of glucose (HG) (22 mmol/L) for at least 2 weeks and compared with control cells exposed to 5 mmol/L glucose (NG). The effect of chronic hyperglycemia on endothelial NO-synthase (eNOS) activity and expression, glycogen synthase (GS) activity, extracellular-signal-regulated kinase (ERK 1,2), p38, Akt expression, and Cu/Zn superoxide-dismutse (SOD-1) activity and expression were determined. Western blot analysis showed that eNOS protein expression decreased in HG cells and was accompanied by diminished eNOS activity. The activity of GS was also significantly lower in the HG cells than in NG cells, 25.0+/-17.4 and 89+/-22.5 nmol UDP-glucose.mg protein(-1)x min(-1), respectively. Western blot analysis revealed a 40-60% decrease in ERK 1,2 and p38 protein levels, small modification of phosphorylated Akt expression, and a 30% increase in SOD-1 protein expression in HG cells. Although SOD expression was increased, no change was observed in SOD activity. These results support the findings that vascular dysfunction due to exposure to pathologically high D-glucose concentrations may be caused by impairment of the NO pathway and increased oxidative stress accompanied by altered glucose metabolism.  相似文献   

14.
15.
One of the main factors that control vasoreactivity and angiogenesis is nitric oxide produced by endothelial nitric oxide synthase (eNOS). We recently showed that knocking out eNOS induces an important reduction of mitochondrial oxidative capacity in slow-twitch skeletal muscle. Here we investigated eNOS's role in physical activity and contribution to adaptation of muscle energy metabolism to exercise conditions. Physical capacity of mice null for the eNOS isoform (eNOS-/-) was estimated for 8 wk with a voluntary wheel-running protocol. In parallel, we studied energy metabolism enzyme profiles and their response to voluntary exercise in cardiac and slow-twitch soleus (Sol) and fast-twitch gastrocnemius (Gast) skeletal muscles. Weekly averaged running distance was two times lower for eNOS-/- (4.09 +/- 0.42 km/day) than for wild-type (WT; 7.74 +/- 0.42 km/day; P < 0.01) mice. Average maximal speed of running was also lower in eNOS-/- (17.2 +/- 1.4 m/min) than WT (21.2 +/- 0.9 m/min; P < 0.01) mice. Voluntary exercise influenced adaptation to exercise specifically in Sol muscle. Physical activity significantly increased Sol weight by 22% (P < 0.05) in WT but not eNOS-/- mice. WT Sol muscle did not change its metabolic profile in response to exercise, in contrast to eNOS-/- muscle, in which physical activity decreased cytochrome-c oxidase (COX; -36%; P < 0.05), citrate synthase (-37%; P < 0.06), and creatine kinase (-24%, P < 0.01) activities. Voluntary exercise did not change energy enzyme profile in heart (except for 39% increase in COX activity in WT) or Gast muscle. These results suggest that eNOS is necessary for maintaining a suitable physical capacity and that when eNOS is downregulated, even moderate exercise could worsen energy metabolism specifically in oxidative skeletal muscle.  相似文献   

16.
Pregnancy enhanced nitric oxide production by uterine artery endothelial cells (UAEC) is the result of reprogramming of both Ca(2+) and kinase signaling pathways. Using UAEC derived from pregnant ewes (P-UAEC), as well as COS-7 cells transiently expressing ovine endothelial nitric oxide synthase (eNOS), we investigated the role of phosphorylation of five known amino acids following treatment with physiological calcium-mobilizing agent ATP and compared with the effects of PMA (also known as TPA) alone or in combination with ATP. In P-UAEC, ATP stimulated eNOS activity and phosphorylation of eNOS S617, S635, and S1179. PMA promoted eNOS phosphorylation but without activation. PMA and ATP cotreatment attenuated ATP-stimulated activity despite no increase in phospho (p)-T497 and potentiation of p-S1179. In COS-7 cells, PMA inhibition of ATP-stimulated eNOS activity was associated with p-T497 phosphorylation. Although T497D eNOS activity was reduced to 19% of wild-type eNOS with ATP and 44% with A23187, we nonetheless observed more p-S1179 with ATP than with A23187 (3.4-fold and 1.8-fold of control, respectively). Furthermore, the S1179A eNOS mutation partly attenuated ATP- but not A23187-stimulated activity, but when combined with T497D, no further reduction of eNOS activity was observed. In conclusion, although phosphorylation of eNOS is associated with activation in P-UAEC, no single or combination of phosphorylation events predict activity changes. In COS-7 cells, phosphorylation of T497 can attenuate activity but also influences S1179 phosphorylation. We conclude that in both cell types, observed changes in phosphorylation of key residues may influence eNOS activation but are not sufficient alone to describe eNOS activation.  相似文献   

17.
The effects of retinoic acid (RA) on nitric oxide (NO) production are controversial. Furthermore, it has never been studied whether these effects are mediated by direct modulation of phosphorylation of endothelial nitric oxide synthase (eNOS). Using bovine aortic endothelial cells, we found that all-trans RA (atRA) dose- and time-dependently decreased NO production without alteration in eNOS expression. This decrease was accompanied by reduction in eNOS-Ser(1179) phosphorylation. However, atRA did not alter the phosphorylation of eNOS-Ser(116) or eNOS-Thr(497). Concurrently, atRA also decreased the expressions of vascular endothelial growth factor (VEGF) and its receptor KDR/Flk-1, and Akt phosphorylation. Co-treatment with troglitazone, an activator of VEGF expression, reversed the atRA-induced reductions in eNOS-Ser(1179) phosphorylation and NO production, with concomitant restoration in VEGF expression. Direct treatment with VEGF also reversed these inhibitory effects, suggesting an important role for VEGF. Nonetheless, the RARalpha antagonist Ro 41-5253 did not block all the inhibitory effects of atRA, indicating that these inhibitory effects are not mediated by the RA response element (RARE). Thus, atRA decreases eNOS-Ser(1179) phosphorylation through a mechanism that depends on VEGF-KDR/Flk-1-mediated Akt phosphorylation but is independent of RARE, leading to reduction in NO production.  相似文献   

18.
Signaling via endothelial nitric oxide synthase (NOS3) limits the heart's response to beta-adrenergic (beta-AR) stimulation, which may be protective against arrhythmias. However, mechanistic data are limited. Therefore, we performed simultaneous measurements of action potential (AP, using patch clamp), Ca2+ transients (fluo 4), and myocyte shortening (edge detection). L-type Ca2+ current (ICa) was directly measured by the whole cell ruptured patch-clamp technique. Myocytes were isolated from wild-type (WT) and NOS3 knockout (NOS3-/-) mice. NOS3-/- myocytes exhibited a larger incidence of beta-AR (isoproterenol, 1 microM)-induced early afterdepolarizations (EADs) and spontaneous activity (defined as aftercontractions). We also examined ICa, a major trigger for EADs. NOS3-/- myocytes had a significantly larger beta-AR-stimulated increase in ICa compared with WT myocytes. In addition, NOS3-/- myocytes had a larger response to beta-AR stimulation compared with WT myocytes in Ca2+ transient amplitude, shortening amplitude, and AP duration (APD). We observed similar effects with specific NOS3 inhibition [L-N5-(1-iminoethyl)-ornithine (l-NIO), 10 microM] in WT myocytes as with NOS3 knockout. Specifically, l-NIO further increased isoproterenol-stimulated EADs and aftercontractions. l-NIO also further increased the isoproterenol-stimulated ICa, Ca2+ transient amplitude, shortening amplitude, and APD (all P < 0.05 vs isoproterenol alone). l-NIO had no effect in NOS3-/- myocytes. These results indicate that NOS3 signaling inhibits the beta-AR response by reducing ICa and protects against arrhythmias. This mechanism may play an important role in heart failure, where arrhythmias are increased and NOS3 expression is decreased.  相似文献   

19.
Primary cultures of endothelial cells, grown on the three-dimensional matrix Gelfoam where they take on the morphology of these cells in vivo, were found to phagocytose Staphylococcus aureus and two strains of Escherichia coli. The phagocytosis was independent of opsonization, although once opsonized, these bacteria were phagocytosed by endothelial cells. As cytochalsin D inhibited the internationalization of S. aureus and E. coli, the phagocytosis by endothelial cells appears to be actin-dependent. Transducing the gene for nitric oxide synthase (NOS) II into endothelial cells allowed us to determine the importance of NO(*) in host immunity against these bacteria. While the growth of S. aureus was impeded by NOS II endothelial cells, two strains of E. coli were killed by an NO(*)-dependent pathway. We conclude that endothelial cells have microbicidal mechanisms that are selective for the type of pathogen encountered.  相似文献   

20.
NOSIP, a novel modulator of endothelial nitric oxide synthase activity.   总被引:10,自引:0,他引:10  
Production of nitric oxide (NO) in endothelial cells is regulated by direct interactions of endothelial nitric oxide synthase (eNOS) with effector proteins such as Ca2+-calmodulin, by posttranslational modifications such as phosphorylation via protein kinase B, and by translocation of the enzyme from the plasma membrane caveolae to intracellular compartments. Reversible acylation of eNOS is thought to contribute to the intracellular trafficking of the enzyme; however, protein factor(s) that govern the translocation of the enzyme are still unknown. Here we have used the yeast two-hybrid system and identified a novel 34 kDa protein, termed NOSIP (eNOS interacting protein), which avidly binds to the carboxyl-terminal region of the eNOS oxygenase domain. Coimmunoprecipitation studies demonstrated the specific interaction of eNOS and NOSIP in vitro and in vivo, and complex formation was inhibited by a synthetic peptide of the caveolin-1 scaffolding domain. NO production was significantly reduced in eNOS-expressing CHO cells (CHO-eNOS) that transiently overexpressed NOSIP. Stimulation with the calcium ionophore A23187 induced the reversible translocation of eNOS from the detergent-insoluble to the detergent-soluble fractions of CHO-eNOS, and this translocation was completely prevented by transient coexpression of NOSIP in CHO-eNOS. Immunofluorescence studies revealed a prominent plasma membrane staining for eNOS in CHO-eNOS that was abolished in the presence of NOSIP. Subcellular fractionation studies identified eNOS in the caveolin-rich membrane fractions of CHO-eNOS, and coexpression of NOSIP caused a shift of eNOS to intracellular compartments. We conclude that NOSIP is a novel type of modulator that promotes translocation of eNOS from the plasma membrane to intracellular sites, thereby uncoupling eNOS from plasma membrane caveolae and inhibiting NO synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号