首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

2.
After 2 month of feeding vitamin E-supplemented diet (100.6 and 0 mg/kg; group I-control, II and III, respectively) the concentration of lipid peroxidation products (diene conjugates, malondialdehyde, Schiff's bases) and activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase) was estimated in rat heart and liver. Although the content of alpha-tocopherol in organs of group II was significantly decreased, the concentration of peroxidation products and enzyme activities was unchanged. Moreover, these parameters were constant in rat liver of group III. The heart was more sensitive because in group III to vitamin E deficiency (the alpha-tocopherol level was dropped fourfold) the concentration of diene conjugates and malondialdehyde was increased and superoxide dismutase activity was decreased. Thus insufficiency of vitamin E may result in selective alterations of myocardial functions. In addition, vitamin E may be useful instrument for correction of free radical oxidation and antioxidant system activity in the heart.  相似文献   

3.
Rats pre-administered with alpha-tocopherol (10 mgs/day) for 7 days afforded a significant protection at the tissue level against the lowering of superoxide dismutase and glutathione peroxidase, especially the selenium-dependent glutathione peroxidase. The protective action of alpha-tocopherol in the diethyldithiocarbamate treated rats may be attributed to its antioxidant/free radical scavenging action. It is concluded that selenium-dependent glutathione peroxidase and alpha-tocopherol act in a complementary fashion to block free radical formation.  相似文献   

4.
The enzymic and non-enzymic systems which induce and control lipid peroxidation (LPO) in muscle cells were studied. The maximal activity of enzymic NADH- and NADPH-dependent LPO was observed in sarcoplasmic reticulum (SR) membranes. It was found that an essential role in enzymic LPO induction belongs to superoxide radical anions and to hydroxyl radicals. The maximal concentration of the natural LPO inhibitor, alpha-tocopherol, was detected in SR membranes. The glutathione peroxidase and superoxide dismutase activities were determined in the cytosol fraction of myocytes. The role of compartmentation of enzymic and non-enzymic systems of LPO induction in muscle cells is discussed.  相似文献   

5.
The free radical scavengers α-tocopherol and butylated hydroxytoluene, but not ascorbate, diminished the growth-inhibiting effects of the dicarboximide fungicide, iprodione in Alternaria alternata. Growth of A. alternata in the presence of iprodione increased the activities of superoxide dismutase and glutathione reductase while catalase was unaffected. Four iprodione sensitive and four iprodione resistant isolates of A. alternata were compared for activity of free radical enzymes. The isolates of A. alternata resistant to iprodione had more catalase activity than those which were sensitive, but did not differ in superoxide dismutase of glutathione reductase, activities. 3-Amino-1.24.-triazole, a specific inhibitor of catalas, reduced the ability of DAR 69775, a dicarboximide resistant isolate of A. alternata. to grow in the presence of iprodione. In A. alternata dicarboximide resistance appeats to be at least partially mediated by enhanced activitiesof, catalase.  相似文献   

6.
The role of oxygen free radicals in ischemia and reperfusion injury of skeletal muscle has not been well defined, partly because of the relative resistance of this tissue to normothermic ischemia. Under normal conditions small quantities of oxygen free radicals are produced but they are quenched by intracellular free radical scavenging enzymes (superoxide dismutase, catalase and glutathione peroxidase) or alpha-tocopherol. The increase in malondialdehyde suggests increased lipid peroxidation initiated by free radical reactions. Lipid peroxidation is potentially a very damaging process to the organized structure and function of membranes. The results of recent studies indicate that: a) oxygen free-radicals mediates, at least in part, the increased microvascular permeability produced by reoxygenation, b) free radical scavengers can reduce skeletal muscle necrosis occurring after prolonged ischemia. Additional evidence support the hypothesis of the interrelationship between ischemic tissue and inflammatory cells. So capillary plugging by granulocytes and oxygen free radical formation may contribute to the ischemic injury.  相似文献   

7.
The liver alpha-tocopherol level of the paraquat fed mice group was lower than that of the control diet-fed group. An excessive intake of quercetin lowered the liver alpha-tocopherol level of the control diet-fed mice group, but did not affect it in the paraquat-fed mice group. The same quercetin intake significantly increased the superoxide dismutase and glutathione peroxidase activities in the liver of both groups, indicating that excessive quercetin intake can either promote or attenuate oxidative stress in the liver.  相似文献   

8.
The activities of catalase (Cat), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione transferase (GST), glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde3-phosphate dehydrogenase (G3PD) were studied in tissue and hemolymph of susceptible (S) (EgBS(2)) and resistant (R) (EgBR(2)) Biomphalaria alexandrina snails. The results showed that CAT and GST were higher in the hemolymph of snails susceptible to Schistosoma mansoni than in that of snails resistant to infestation, while SOD and G3PD were lower in the susceptible snails. The role of these enzymes as free radical scavengers was traced 1 and 24 h after infection of the two snail lines with S. mansoni. Moreover, the activities of SOD and G3PD were also measured 2 and 4 weeks post infection. The results revealed that the overall enzymatic activities were higher in susceptible than in resistant snail tissues. After 1 h of infection, all enzymes were increased in R and S snails except GST and G6PD which decreased in S snails. After 24 h of infection, GST increased in S snails and G3PD decreased in both S and R snails while other enzymes reached normal levels.  相似文献   

9.
The relationship between voluntary distance running and antioxidant capacity was studied in rats after three weeks voluntary running. Hydroxyl radical level, reduced glutathione level, activities of glutathione reductase and superoxide dismutase were measured in plasma, liver, brain, soleus and gastrocnemius white muscle. Hydroxyl radical level of liver negatively correlated with the running distance (r=-0.616, P<0.001). The reduced glutathione levels of liver and brain increased depending on the running distance and the correlation was confirmed between them in liver (r=0.638, P<0.01) and brain (r=0.766, P<0.001). The hydroxyl radical level in liver positively correlated with the activities of glutathione reductase (r=0.464, P<0.05) and superoxide dismutase (r=0.549, P<0.05). A significant positive correlation was detected between the hydroxyl radical level and superoxide dismutase activity in brain (r=0.488, P<0.05). These results demonstrate that physical activity correlates well with glutathione level and anti-oxidant enzyme activities in liver, suggesting a close relation between physical activity and induction of antioxidant systems.  相似文献   

10.
Isolated pachytene spermatocytes liver longer than round spermatids in vitro. Indigenous formation of oxygen-derived free radicals and hydrogen peroxide can cause damage to germ cells. The germ cell antioxidant capacity may play an important role in this respect. In view of this, we have examined the activity and cellular localization of superoxide dismutase (SOD) and glutathione S-transferases (GST) in rat testicular cells. We have found significant differences in the distribution of these enzymatic activities in the germ cells. In addition, this study shows that alpha-tocopherol is found in various amounts in rat testicular cells in the order of: Sertoli cells greater than pachytene spermatocytes greater than round spermatids, with a factor of 4 in the alpha-tocopherol content between Sertoli cells and round spermatids.  相似文献   

11.
Superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in pigmented and unpigmented liver tissues of frog and albino rat, respectively, were studied. Our results show that pigmented tissue is lacking in manganese superoxide dismutase activity and that the main enzymatic activity utilized in the cytosol by pigmented cells to reduce the hydrogen peroxide to water is represented by catalase; on the contrary, for the same reaction, the cells of albino rat liver primarily utilize the glutathione peroxidase activity. Both a low glutathione peroxidase activity and a low glutathione reductase activity were found in pigmented tissue of frog liver when compared with unpigmented tissue of rat liver. In light of our results, we also report a hypothetical interrelationship between melanin and reduced glutathione: We believe that in pigmented cells the melanin could act as a reducing physiological agent replacing the glutathione in the reduction of hydrogen peroxide. This reducing action of melanin could cause a diminished need for GSH and therefore could provoke the low glutathione peroxidase and reductase activities in pigmented tissue.  相似文献   

12.
Status of oxidative/antioxidative profile was the mechanistic approach to inumerate the nature of protection by N-acetylcysteine (NAC) in isoniazid (INH) exposed experimental animals. Analysis of lipid peroxidation, thiol levels, cytochrome P450, superoxide dismutase (SOD), catalase, glutathione peroxidase, reductase and transferase were estimated in liver along with the body and liver weight of animals and histological observations. Isoniazid exposure to animals resulted in no change in body and liver weights. Thiols, lipid peroxidation, catalase, SOD glutathione peroxidase, reductase, transferase and cytochrome P450 levels were altered with INH exposure. Supplementation of NAC with INH protected the animals against hepatotoxic reactions by minimizing the free radical induced tissue injury and overall maintenance of the endogenous scavengers of free radicals.  相似文献   

13.
Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides × Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but glutathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure, photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while glutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone.  相似文献   

14.
Rats fed with either a sufficient-vitamin A or a vitamin A-free diet were pretreated with 750 mg/kg body weight of retinyl palmitate, alpha-tocopherol acetate, ascorbic acid or glutathione. Benzo[a]pyrene (BaP) metabolism and BaP-induced mutagenesis in Salmonella typhimurium TA98 were investigated and related to lipid peroxidation activities in postmitochondrial (S9) liver fraction. The microsomal mixed-function oxidase activities were decreased by vitamin A deficiency and weakly affected by scavenger treatment. The rate of lipid peroxidation of microsomal membranes was unaffected by vitamin A deficiency because of decreased polyunsaturated fatty acids and increased vitamin E contents. However, lipid peroxidation was decreased by pretreatment with fat-soluble vitamins (chiefly vitamin E) and increased by ascorbic acid. Within each experimental group both BaP metabolism and BaP mutagenic activity were closely correlated with the rate of lipid peroxidation. In vitamin A deficiency, the increased BaP metabolism and mutagenicity could be related to a decrease in cytosolic contents of scavengers (vitamin A and glutathione). In Ames test conditions, the free radical pathway became a route for BaP metabolism and thus the BaP activation to mutagenic metabolites is related to the cellular status in free radical scavengers.  相似文献   

15.
The effect of methionine or citrate on antioxidant defense system has been studied in urolithic rat. Liver weight and its protein concentration did not change in the rats fed with calculi producing diet (CPD) when compared to normal diet fed rats. Feeding rats along with citrate (c-CPD) or methionine (m-CPD) improved their body weight gain. Liver microsomes and mitochondria fractions of CPD and c-CPD fed groups showed increased susceptibility for lipid peroxidation in presence of ascorbate and t-butyl hydroperoxide when compared to either control or m-CPD fed groups. Increased superoxide dismutase and xanthine oxidase activities, decreased catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase activities, decreased concentrations of reduced glutathione, total thiols, ascorbic acid and vitamin-E and increased formation of hydroxyl radical, hydroperoxides and diene conjugates were observed in the liver of both CPD fed group as well as c-CPD fed group. Except SOD and xanthine oxidase, all other parameters were normalized in m-CPD fed group. This suggested that feeding methionine reduced the susceptibility for lipid peroxidation by restoration of the level of free radical scavengers.  相似文献   

16.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

17.
A method for determining relative tyrosyl radical scavenging activity of antioxidants which requires only a standard fluorometer and commercially available materials is presented. Ultraviolet irradiation of aqueous tyrosine solutions containing superoxide dismutase and catalase produces fluorescent dityrosine residues via dimerization of photogenerated tyrosyl radicals. Added antioxidants suppress the buildup of fluorescence by scavenging the tyrosyl radicals. A correlation exists between the ability of a substance to suppress dityrosine formation and the substance's one-electron oxidation potential. This method demonstrates that ovothiol A scavenges tyrosyl radicals much more efficiently than glutathione or cysteine, resembling instead the known biological radical scavengers uric acid and ascorbic acid and the alpha-tocopherol analog trolox.  相似文献   

18.
Actions of melatonin in the reduction of oxidative stress   总被引:18,自引:0,他引:18  
Melatonin was discovered to be a direct free radical scavenger less than 10 years ago. Besides its ability to directly neutralize a number of free radicals and reactive oxygen and nitrogen species, it stimulates several antioxidative enzymes which increase its efficiency as an antioxidant. In terms of direct free radical scavenging, melatonin interacts with the highly toxic hydroxyl radical with a rate constant equivalent to that of other highly efficient hydroxyl radical scavengers. Additionally, melatonin reportedly neutralizes hydrogen peroxide, singlet oxygen, peroxynitrite anion, nitric oxide and hypochlorous acid. The following antioxidative enzymes are also stimulated by melatonin: superoxide dismutase, glutathione peroxidase and glutathione reductase. Melatonin has been widely used as a protective agent against a wide variety of processes and agents that damage tissues via free radical mechanisms.  相似文献   

19.
The interaction of reduced glutathione (GSH) with active oxygen species generated during xanthine-oxidase-catalyzed metabolism of xanthine was investigated. The only GSH-derived product detected in this system was oxidized glutathione (GSSG). Catalase inhibited the oxidation of GSH to GSSG by more than 80%, whereas superoxide dismutase exerted a smaller but significant inhibition of GSSG formation. Hydroxyl radical (OH) scavengers or desferrioxamine (1 mM) had no effect on GSSG formation. Using EPR spectroscopy and the spin trap 5,5-dimethylpyrroline-N-oxide (DMPO), the production of superoxide was observed by the detection of a DMPO-OOH radical adduct. This spectrum was altered by the inclusion of GSH (5 - 20 mM) in the reaction mixture, indicating the generation of a different radical species consistent with DMPO-glutathionyl radical adduct generation.  相似文献   

20.
The effect of Dipel (D), a Bacillus thuringiensis-based bioinsecticide, on hepatic antioxidant enzyme activities and lipid peroxidation in rat liver was investigated. Administration of D in a dose of 1 mg/100 g body mass for 4 successive days increased the activities of glutathione peroxidase (GPx), glutathione reductase (GR) and the level of malondialdehyde (MDA) in rat hepatocytes. The activity of superoxide dismutase (SOD) and glutathione (GSH) level were decreased. Administration of D in rats pretreated with alpha-tocopherol (alphaT) or acetylsalicylic acid (ASA) decreased the activities of GPx, GR and MDA levels, while the GSH level was increased compared with rats treated with D alone. The SOD activity was increased in rats pretreated with alphaT before D, but decreased on pretreatment with ASA, compared with rats treated with D alone. The results indicated that D induced oxidative stress in rat liver that has been protected by prior administration of alphaT or ASA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号