首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

2.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

3.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

4.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

5.
Grasslands in northern China and the Qinghai-Tibetan plateau are particularly important to both ecosystem functioning and pastoral livelihoods. Although there are numerous degradation studies on the effect of livestock grazing across the region, they are largely only published in Chinese, and most focus on single sites. Based on case studies from 100 sites, covering a mean annual precipitation gradient of 95–744 mm, we present a comprehensive, internationally accessible review on the impact of livestock grazing on vegetation and soils. We compared ungrazed or slightly grazed sites with moderately and heavily grazed sites by evaluating changes in two indicator groups: vegetation (plant species richness, vegetation cover, aboveground biomass, belowground biomass and root/shoot ratio) and soil (pH, bulk density, organic C, total N, total P and available P). Most indicators declined with intensified grazing, while soil pH, bulk density and belowground biomass increased. Available P showed no clear response. Variables within indicator groups were mostly linearly correlated at a given grazing intensity. Relative grazing effects on different indicators varied along specific abiotic gradients. Grazing responses of plant species richness, aboveground biomass, soil bulk density, total N and available P interacted with precipitation patterns, while grazing effects on belowground biomass were influenced by temperature. Elevation had impact on grazing responses of aboveground biomass and soil organic carbon. Complex grazing effects reflect both methodological inconsistency and ecological complexity. Further assessments should consider specific characteristics of different indicators in the context of the local environment.  相似文献   

6.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

7.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

8.
The effects of season and community composition as generated by livestock herbivory of differing intensity on seed species preference by Pogonomyrmex barbatus (F. Smith) were studied in a semiarid savanna on the Edward's Plateau, TX. Seasonal differences in nutrient requirements of the colony could lead to differential preferences for seeds harvested in spring and fall. Field cafeteria studies were conducted to test the hypothesis that late successional species, with their high nutrient content, would be chosen regardless of grazing intensity or season. Commercial seeds of known nutrient content were used to test the hypothesis that high protein levels would be chosen in spring and high carbohydrate levels in the fall. Naturally occurring seeds were differentially harvested and some were preferred regardless of relative availability. Total seed harvest in cafeteria experiments was higher in spring than in fall. Commercial seeds were harvested equally among treatments within a season; thus, nutrient selection was indistinguishable. Preference for native species was significantly different in both seasons but was influenced by a significant interaction with grazing treatments. Bouteloua curtipendula, a late successional mid-grass, was harvested significantly more in the spring than the fall and at higher rates in the heavily grazed treatment, rejecting the hypothesis that they would be chosen regardless of treatment or season. Seed preference for late successional grasses within heavily grazed communities may slow succession after grazing. During disturbance recovery, late successional species may be reduced by forager preference and rates of spring harvest.  相似文献   

9.
The experiment utilized a fenceline contrast in vegetation and soil condition that was clearly visible on Landsat imagery. Measurements of vegetation cover, soil structure and chemistry, and infiltration were made. The greatest vegetation change was at the soil surface where the loss of litter and lichen crust cover under heavy grazing accompanied the loss of perennial shrubs. Although grazing caused changes in soil structure and chemistry to less than 10 cm in depth, these changes are quite significant for plant growth. Consistent differences in the infiltration of applied rainfall at two intensities were measured between the grazed and ungrazed sites. At both intensities of application the absence of a lichen crust increased infiltration three-fold on the heavily grazed site compared with the ungrazed site. The implications of these observations on the long-term functioning of this landscape are discussed.  相似文献   

10.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

11.
《新西兰生态学杂志》2011,30(2):209-217
We sampled soils and vegetation within and outside two sheep and rabbit exclosures, fenced in 1979, on steep sunny and shady slopes at 770 m altitude on seasonally-dry pastoral steeplands. The vegetation of sunny aspects was characterised by higher floristic diversity, annual species, and low plant cover. Here the exotic grass Anthoxanthum odoratum dominated on grazed treatments, and the exotic forb Hieracium pilosella on ungrazed. Shady aspects supported fewer, and almost entirely perennial, species. Here Hieracium pilosella dominated grazed treatments, but co-dominated with the exotic forb H. praealtum and the native grass Festuca novae-zelandiae on ungrazed treatments. There was 43% more biomass in exclosures (P < 0.01). Most of the biomass difference (4285 kg/ha) was from greater root mass (2400 kg/ha). 1385 kg/ha of the difference was from herbage and the remainder (500 kg/ha) from litter. Exclosures had 50 to 100% more Ca, Mg, K and P in the biomass (P < 0.05), but the effect on soils was limited to significantly higher concentrations of total N (P < 0.05) and exchangeable Mg (P < 0.01) in 0-7.5 cm soils. We conclude that stopping grazing for 16 years on seasonally-dry steeplands results in greater plant cover, approximately double the biomass of standing vegetation, greater biomass in roots, and more biomass nutrients relative to grazed areas. However, it does not favour native species and has little effect on soil nutrients or soil carbon. Stopping grazing alone therefore cannot be regarded as a comprehensive short- or medium-term vegetation or soil rehabilitation option.  相似文献   

12.
Summary The effects of spring grazing by sheep and of natural levels of insect herbivory were studied in 1985 on a limestone field abandoned from arable land for four years. A split-plot design was adopted in which paddocks, arranged in Latin squares, were either left ungrazed or heavily grazed by sheep for ten days in April. Within each paddock plots were either sprayed regularly with Malathion-60 or untreated.Natural levels of insect herbivory, compared to the reduced levels in insecticide-treated plots, had effects of similar magnitude to those from the short burst of spring grazing. Many attributes of the grazed/insecticide-treated sward were either increased or decreased by a factor of two within a season. Both types of herbivore caused changes in the direction of plant succession as well as in its rate. Effects on early successional species were large and similar when caused by either type of herbivore. Effects on later successional species were often smaller, but also showed differences in the action of the two herbivore types, as did effects on sward height, species richness and total cover. The effects of sheep and insect herbivory were not always additive or in the same direction.The results suggest that manipulations of both mammal and insect herbivores may be powerful tools for directing changes in plant community composition.  相似文献   

13.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

14.

Naturalistic grazing by large herbivores is an increasingly practiced way of managing habitats with conservational value. It has the potential to restore and enhance biodiversity, creating self-sustainable environments vital for organisms requiring regular disturbances to moderate and/or reverse successional changes. European bison, Exmoor pony, and Tauros cattle were introduced in 2015 to a former military training area in Milovice, Czech Republic. The prevailing vegetation type is a forest-steppe savanna with Bromus erectus-dominated xeric grasslands mixed with deciduous shrubs and trees. After the cessation of military use, the area was abandoned which led to successional changes, including the dominance of tall grasses, litter accumulation, and bush encroachment. In 2017–2021, we monitored grassland vegetation in 30 grazed permanent plots (2?×?2 m) and 5 control plots representative of ungrazed, abandoned vegetation adjacent to the grazed areas. Naturalistic grazing increased species richness and the cover of forbs, while the cover of grasses and legumes was minimally affected. Grazing increased functional diversity of plant community, promoted a compositional change to small statured species and an increased incidence of red-list species. Seven years of continuous grazing increased the conservation value of this forest-steppe vegetation, a habitat type rapidly declining in Europe.

  相似文献   

15.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   

16.
Grazed steppe ecosystems are discussed as one of the big global carbon sinks that may have the potential to sequester large amounts of atmospheric CO2 and mitigate the effects of global change if grazing is abandoned or management improved. But until today, little is known about sequestration potentials and stabilisation mechanisms in complete soil profiles of semiarid grasslands and how these systems react to grazing cessation. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe soils under different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Higher inputs of organic matter in ungrazed treatments led to higher amounts of OC in coarse aggregate size classes (ASC) and especially in particulate organic matter (POM) fractions across all depth. These processes started in the topsoil and took more than 5 years to reach deeper soil horizons (>10 cm). After 25 years of grazing cessation, subsoils showed clearly higher POM amounts. We found no grazing-induced changes of soil organic matter (SOM) quantity in fine ASC and particle size fractions. Current C-loading of fine particle size fractions was similar between differently grazed plots and decreased with depth, pointing towards free sequestration capacities in deeper horizons. Despite these free capacities, we found no increase in current C-loading on fine mineral soil fractions after 25 years of grazing exclusion. Silt and clay fractions appeared to be saturated. We suppose empirical estimations to overestimate sequestration potentials of particle size fractions or climatic conditions to delay the decomposition and incorporation of OM into these particle size fractions. POM quality was analysed using solid-state 13C NMR spectroscopy to clarify if grazing cessation changed chemical composition of POM in different ASC and soil depths via changing litter quality or changing decomposition dynamics. We found comparable POM compositions between different grazing intensities. POM is decomposed hierarchically from coarse to fine particles in all soil depths and grazing cessation has not affected the OM decomposition processes. The surplus of OM due to grazing cessation was predominately sequestered in readily decomposable POM fractions across all affected horizons. We question the long-term stabilisation of OM in these steppe soils during the first 25 years after grazing cessation and request more studies in the field of long-term OM stabilisation processes and assessment of carbon sequestration capacities to consider deeper soil horizons.  相似文献   

17.
Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of grazing, mineralization rate increased over the course of succession, whereas it remained relatively low when sites were grazed. The largest differences in mineralization rate between grazed and ungrazed sites were found at late successional stages where grazing pressure was lowest. The amount of plant litter was significantly lower at grazed sites. In addition, the amount of litter and potential litter (non-woody, live shoots) was linearly related to net N-mineralization rate. This implies that herbivores reduced mineralization rate by preventing litter accumulation. Bulk density was higher at grazed salt-marsh sites than at ungrazed sites. This factor may also have contributed to the differences in net N-mineralization rate between grazed and ungrazed sites. Received: 30 November 1997 / Accepted: 27 August 1998  相似文献   

18.
Plant-soil feedbacks are widely recognized as playing a significant role in structuring plant communities through their effects on plant-plant interactions. However, the question of whether plant-soil feedbacks can be indirectly driven by other ecological agents, such as large herbivores, which are known to strongly modify plant community structure and soil properties, remains poorly explored. We tested in a glasshouse experiment how changes in soil properties resulting from long-term sheep grazing affect competitive interactions (intra- and inter-specific) of two graminoid species: Nardus stricta, which is typically abundant under high sheep grazing pressure in British mountain grasslands; and Eriophorum vaginatum, whose abundance is typically diminished under grazing. Both species were grown in monocultures and mixtures at different densities in soils taken from adjacent grazed and ungrazed mountain grassland in the Yorkshire Dales, northern England. Nardus stricta performed better (shoot and root biomass) when grown in grazing-conditioned soil, independent of whether or not it grew under inter-specific competition. Eriophorum vaginatum also grew better when planted in soil from the grazed site, but this occurred only when it did not experience inter-specific competition with N. stricta. This indicates that plant-soil feedback for E. vaginatum is dependent on the presence of an inter-specific competitor. A yield density model showed that indirect effects of grazing increased the intensity of intra-specific competition in both species in comparison with ungrazed-conditioned soil. However, indirect effects of grazing on the intensity of inter-specific competition were species-specific favouring N. stricta. We explain these asymmetric grazing-induced effects on competition on the basis of traits of the superior competitor and grazing effects on soil nutrients. Finally, we discuss the relevance of our findings for plant community dynamics in grazed, semi-natural grasslands.  相似文献   

19.
Summary Few field studies have attempted to relate effects of actual livestock grazing on soil and plant water status. The present study was initiated to determine the effects of periodic defoliations by cattle during spring on soil moisture and plant water status in a crested wheatgrass (Agropyron cristatum (L.) Gaertn. and A. desertorum (Fisch. ex Link) Schult.) pasture in central Utah. Soil moisture in the top 130 cm of the soil profile was depleted more rapidly in ungrazed plots than in grazed plots during spring and early summer. Soil moisture depletion was more rapid in grazed plots in one paddock after 1 July due to differential regrowth, but there was no difference in soil water depletion between plots in another paddock during the same period. This difference in soil water depletion between paddocks was related to a difference in date of grazing. Although more water had been extracted from the 60 cm to 130 cm depths in ungrazed plots by late September, cumulative soil moisture depletion over the entire 193 cm profile was similar in grazed and ungrazed plots. Prior to 1 July, grazing had no effect on predawn leaf water potentials as estimated by a pressure chamber technique; however, after 1 July, predawn leaf water potentials were lower for ungrazed plants. Midday leaf water potentials were lower for grazed plants before 1 July, but did not differ between grazed and ungrazed plants after 1 July. A 4- to 8-day difference in date of defoliation did not affect either predawn or midday leaf water potentials. The observed differences in water use patterns during spring and early-summer may be important in influencing growth and competitive interactions in crested wheatgrass communities that are subject to grazing by domestic livestock.  相似文献   

20.

Aims

Few studies have focused on changes in the physical and chemical properties of soils that are induced by grazing at high altitudes. Our aim was to identify potential responses of soil to grazing pressure on the semiarid steppe of the northern Tibetan Plateau and their probable causes.

Methods

Fractal geometry to describe soil structure, soil dynamics, and physical processes within soil is becoming an increasingly useful tool that allows a better understanding of the performance of soil systems. In this study, we sampled four experimental areas in the northern part of the Tibetan Plateau under different grazing intensities: ungrazed, lightly grazed, moderately grazed and heavily grazed plots. Fractal methods were applied to characterise particle-size distributions and pore patterns of soils under different grazing intensities.

Results

Our results reveal a highly significant decrease in the fractal dimensions of particle size distributions (D 1 ) and the fractal dimensions of all pores (D 2 ) with increasing grazing intensity. Soil organic carbon (SOC), total N and total P concentrations increased significantly with decreasing grazing intensity. We did not find differences in soil pH in response to grazing.

Conclusions

Grazing induced a significant deterioration of the physical and chemical topsoil properties in the semiarid steppe of the northern Tibetan Plateau. Fractal dimensions can be a useful parameter for quantifying soil degradation due to human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号