首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   

2.
Floodplain lakes may play an important role in the cycling of organic matter at the landscape scale. For those lakes on the middle and lower reaches of the Yangtze (MLY) floodplain which are subjected to intense anthropogenic disturbance, carbon burial rates should, theoretically, be substantial due to the high nutrient input, increased primary production and high sediment accumulation rates. There are more than 600 lakes >1 km2 on the Yangtze floodplain including 18 lakes >100 km2 and most are shallow and eutrophic. 210Pb‐dated cores were combined with total organic carbon (TOC) analyses to determine annual C accumulation rates (C AR; g C m?2 yr?1) and the total C stock (since ~1850). The sediment TOC content is relatively low with an average <2% in most lakes. C AR ranged from ~5 to 373 g C m?2 yr?1, resulting in C standing stocks of 0.60–15.3 kg C m?2 (mean: ~5 kg C m?2) since ~1850. A multicore study of Chaohu lake (770 km2) indicated that spatial variability of C burial was not a significant problem for regional upscaling. The possible effect of changes in lake size and catchment land use on C burial was examined at Taibai lake and indicated that lake shrinkage and declining arable agriculture had limited effects on C AR. The organic C standing stock in individual lakes is, however, significantly dependent on lake size, allowing a simple linear scaling for all the MLY lakes. Total regional C sequestration was ~80 Tg C since ~1850, equivalent to ~11% of C sequestration by soils, but in ~3% of the land area. Shallow lakes from MLY are a substantial regional C sink, although strong mineralization occurs due to their shallow nature and their role as C sinks is threatened due to lake drainage.  相似文献   

3.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

4.
Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long‐term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land‐use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr?1 and 7.7 ± 1.4 g C m?2 yr?1 in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr?1) was higher than those in other regions (< 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon‐influenced regions.  相似文献   

5.
6.
SUMMARY 1. Following fish removal, the water quality in biomanipulated lakes often improves concomitant with decreased phosphorus (P) levels. Because the decrease in P concentrations derives most probably either directly or indirectly from fish, which are the main target of biomanipulation, this study examined the P release of 0+, 1+ and 2+ roach [Rutilus rutilus (L.)] and changes in the P release during summer in a shallow eutrophic lake in Finland. 2. The P release was separated into P derived from benthic and littoral food items and into recycled P derived from feeding on zooplankton, to estimate the contribution of net P additions to the water column by the fish to the increase in P concentrations of the lake water (75–110 mg P m?3) in summer 1991–96. 3. Individual P release of roach by both egestion and excretion was estimated with a bioenergetics model. The size of the roach population was estimated with a depletion method and the proportions of different age groups from catch samples, using a programme separating mixtures of normal distributions. The sensitivity of the release estimates to variation in the growth data was estimated with the jackknife technique. 4. The biomass‐specific P release by 0+ roach (0.36–0.54 mg P g?1 day?1) was higher than that by older roach (0.07–0.16 mg P g?1 day?1) throughout the summer. The P release by the whole roach population deriving from benthic and littoral food items (0.7–2.7 mg m?3 during July to August, representing a net addition to the water column) was 5–19 times lower in 1991–96 than the recycled P release deriving from zooplankton (8.9–25.7 mg m?3), and too low to explain the increase in the P concentration of the lake water during the summer. Because the biomass‐specific P release and roach diet composition vary with fish age, it is important to consider the age structure of fish populations to obtain correct estimates of P release and net additions to the water column. 5. The removal of roach by fishing diminished the roach stock greatly, but the fish‐mediated P release to the water column changed little. This effect was because of the high compensation capacity of the roach population, leading to high recruitment of young fish with higher biomass‐specific P release rates. 6. External loading is very low during summer months and therefore it cannot explain the increase in the P concentration of water during that time. Internal loading from the sediment might be as high as 10.2 mg P m?2 day?1, i.e. 50 times higher than the maximum net P addition by the total roach population.  相似文献   

7.
Forest soils store a substantial amount of carbon, often more than the forest vegetation does. Estimates of the amount of soil carbon, and in particular estimates of changes in these amounts are still inaccurate. Measuring soil carbon is laborious, and measurements taken at a few statistically unrepresentative sites are difficult to scale to larger areas. We combined a simple dynamic model of soil carbon with litter production estimated on the basis of stand parameters, models of tree allometry and biomass turnover rates of different biomass components. This integrated method was used to simulate soil carbon as forest stands develop. The results were compared with measurements of soil carbon from 64 forest sites in southern Finland. Measured carbon stocks in the organic soil layer increased by an average of 4.7±1.4 g m?2 a?1 with increasing stand age and no significant changes were measured in the amount of carbon in mineral soil. Our integrated method indicated that soil carbon stocks declined to a minimum 20 years after clear‐cutting and the subsequent increase in the soil carbon stock (F/H ? 1 m) was 5.8±1.0 g m?2 a?1 averaged over the period to next harvesting (~125 years). Simulated soil carbon accumulation slowed down considerably in stands older than 50 years. The carbon stock measured (F/H ? 1 m) for the study area averaged 6.8±2.5 kg m?2. The simulated carbon stock in soil was 7.0±0.6 kg m?2 on average. These tests of the validity of the integrated model suggest that this method is suitable for estimating the amount of carbon in soil and its changes on regional scales.  相似文献   

8.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

9.
1. Phosphorus (P) concentrations in the water column of lakes and wetlands are crucial to their trophic status and ecosystem function, but quantifying the processes controlling P concentrations in the field has been a difficult task. A site‐based, in‐lake method is described to partition major field processes controlling P concentration in a shallow lake. 2. It involves (i) in‐lake deployment of a suite of chambers that isolate in‐chamber activities from atmospheric sources, groundwater input and horizontal water movement; (ii) monitoring P concentrations and relevant water properties inside and outside the isolation chambers; and (iii) calculating the contribution of each individual process by simple mathematical deduction, so as to differentiate the contributions from the different sources. 3. The method was applied at nearshore and offshore sites in a seasonal, groundwater‐fed shallow lake on the Swan Coastal Plain, south‐western Australia, during winter refilling. Primary (atmospheric and groundwater) and secondary processes (e.g. circulation and sediment‐water interactions) were partitioned and quantified in terms of their contributions to water column P [as total P (TP; μg m?2 day?1)]. 4. Atmospheric and groundwater inputs were the two main processes contributing P loadings (1233 and 1010 μg P m?2 day?1), but their influence appeared restricted to the near‐shore site. The estimated influence on TP by mixing‐circulation, atmosphere and groundwater were 2.4–25 times higher near the lake margin as compared with the offshore site. The circulation and sediment‐water interactions decreased water column P at the marginal site, but increased P offshore because of subsequent P release from sediment and a concurrent increase in pH. 5. Results are consistent with data reported elsewhere, and the factors that could affect the accuracy of partitioning are discussed.  相似文献   

10.
The transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems is significant and can be a dominant source of new N to many watersheds. Bacterially mediated denitrification in lake sediments may ameliorate the effects of N loading by permanently removing such inputs. We measured denitrification in sediments collected from lakes in the Colorado Rocky Mountains (USA) receiving elevated (5–8?kg?N?ha?1?y?1) or low (<2?kg?N?ha?1?y?1) inputs of atmospheric N deposition. The nitrate (NO3 ?) concentration was significantly greater in high-deposition lakes (11.3?μmol?l?1) compared to low-deposition lakes (3.3?μmol?l?1). Background denitrification was positively related to NO3 ? concentrations and we estimate that the sampled lakes are capable of removing a significant portion of N inputs via sediment denitrification. We also conducted a dose–response experiment to determine whether chronic N loading has altered sediment denitrification capacity. Under Michaelis–Menten kinetics, the maximum denitrification rate and half-saturation NO3 ? concentration did not differ between deposition regions and were 765?μmol?N?m?2?h?1 and 293?μmol?l?1?NO3 ?, respectively, for all lakes. We enumerated the abundances of nitrate- and nitrite-reducing bacteria and found no difference between high- and low-deposition lakes. The abundance of these bacteria was related to available light and bulk sediment resources. Our findings support a growing body of evidence that lakes play an important role in N removal and, furthermore, suggest that current levels of N deposition have not altered the abundance of denitrifying bacteria or saturated the capacity for sediment denitrification.  相似文献   

11.
An improved analysis of forest carbon dynamics using data assimilation   总被引:9,自引:0,他引:9  
There are two broad approaches to quantifying landscape C dynamics – by measuring changes in C stocks over time, or by measuring fluxes of C directly. However, these data may be patchy, and have gaps or biases. An alternative approach to generating C budgets has been to use process‐based models, constructed to simulate the key processes involved in C exchange. However, the process of model building is arguably subjective, and parameters may be poorly defined. This paper demonstrates why data assimilation (DA) techniques – which combine stock and flux observations with a dynamic model – improve estimates of, and provide insights into, ecosystem carbon (C) exchanges. We use an ensemble Kalman filter (EnKF) to link a series of measurements with a simple box model of C transformations. Measurements were collected at a young ponderosa pine stand in central Oregon over a 3‐year period, and include eddy flux and soil CO2 efflux data, litterfall collections, stem surveys, root and soil cores, and leaf area index data. The simple C model is a mass balance model with nine unknown parameters, tracking changes in C storage among five pools; foliar, wood and fine root pools in vegetation, and also fresh litter and soil organic matter (SOM) plus coarse woody debris pools. We nested the EnKF within an optimization routine to generate estimates from the data of the unknown parameters and the five initial conditions for the pools. The efficacy of the DA process can be judged by comparing the probability distributions of estimates produced with the EnKF analysis vs. those produced with reduced data or model alone. Using the model alone, estimated net ecosystem exchange of C (NEE)=?251±197 g C m?2 over the 3 years, compared with an estimate of ?419±29 g C m?2 when all observations were assimilated into the model. The uncertainty on daily measurements of NEE via eddy fluxes was estimated at 0.5 g C m?2 day?1, but the uncertainty on assimilated estimates averaged 0.47 g C m?2 day?1, and only exceeded 0.5 g C m?2 day?1 on days where neither eddy flux nor soil efflux data were available. In generating C budgets, the assimilation process reduced the uncertainties associated with using data or model alone and the forecasts of NEE were statistically unbiased estimates. The results of the analysis emphasize the importance of time series as constraints. Occasional, rare measurements of stocks have limited use in constraining the estimates of other components of the C cycle. Long time series are particularly crucial for improving the analysis of pools with long time constants, such as SOM, woody biomass, and woody debris. Long‐running forest stem surveys, and tree ring data, offer a rich resource that could be assimilated to provide an important constraint on C cycling of slow pools. For extending estimates of NEE across regions, DA can play a further important role, by assimilating remote‐sensing data into the analysis of C cycles. We show, via sensitivity analysis, how assimilating an estimate of photosynthesis – which might be provided indirectly by remotely sensed data – improves the analysis of NEE.  相似文献   

12.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

13.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

14.
Elevated atmospheric carbon dioxide increases soil carbon   总被引:4,自引:0,他引:4  
The general lack of significant changes in mineral soil C stocks during CO2‐enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta‐analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2–9 years, at a median rate of 19 g C m?2 yr?1. We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m?2 yr?1 for 5–8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta‐analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.  相似文献   

15.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

16.
Lake Muzahi,Rwanda: limnological features and phytoplankton production   总被引:1,自引:1,他引:0  
Lake Muhazi, a small lake of Rwanda (East Africa) was studied from 1986 to 1990. A dramatic decrease of the catch of Oreochromis niloticus (350 T y−1 in the fifties vs 30 T y−1 in 1982) suggested a loss of productivity or overfishing. In the same period, other ecological changes occurred: the submerged macrophytes regressed and there was a decrease in Secchi depth (0.65 m in 1987 vs 1.5 m in the fifties). Compared to other lakes of the same area, the plankton production seemed low. The results of the present study characterize lake Muhazi as a shallow lake with a rather unstable diurnal stratification and with slight differences in mixing regime between its eastern, deepest part and its western, shallowest part. Secchi disk depth does not vary seasonally to a large extent. The water has a rather high mineral content (conductivity of about 500 μS cm−1 at 25 °C) and low concentrations of dissolved N and P, except in the hypolimnion, where NH inf4 sup+ -N can be high. Two species, Microcystis aeruginosa and Ceratium hirundinella, account for most of the phytoplankton biomass, which is about 50–80 mg chlorophyll a m−2 in the euphotic zone, usually with little seasonal variation. Daily gross production estimates amount to about 6 to 9.5 g O2 m−2 d−1 with a significant difference between the two parts of the lake. Data on C:N and C:P ratio in the phytoplankton suggest that some N deficiency might occur in the eastern part. Moreover, the Zm:Zc ratio could also lead to rather low net production rates (0.21–0.25 d−1 for a mixed layer of 4 m) In conclusion, the primary production of lake Muhazi is medium for African lakes and the hypothesis that decreased planktonic production could account for a reduced fish production should be discarded. Whereas the present yield of the fishery is only 20 kg ha−1 y−1, the yield estimated from primary production ranges between 46 and 64 kg ha−1 y−1. This could be reached through proper management. Finally, some hypotheses are given to explain the ecological changes which occurred in the lake.  相似文献   

17.
The organic carbon (C) stocks contained in peat were estimated for a wetland‐rich boreal region of the Mackenzie River Basin, Canada, using high‐resolution wetland map data, available peat C characteristic and peat depth datasets, and geostatistics. Peatlands cover 32% of the 25 119 km2 study area, and consist mainly of surface‐ and/or groundwater‐fed treed peatlands. The thickness of peat deposits measured at 203 sites was 2.5 m on average but as deep as 6 m, and highly variable between sites. Peat depths showed little relationship with terrain data within 1 and 5 km, but were spatially autocorrelated, and were generalized using ordinary kriging. Polygon‐scale calculations and Monte Carlo simulations yielded a total peat C stock of 982–1025 × 1012 g C that varied in C mass per unit area between 53 and 165 kg m?2. This geostatistical approach showed as much as 10% more peat C than calculations using mean depths. We compared this estimate with an overlapping 7868 km2 portion of an independent peat C stock estimate for western Canada, which revealed similar values for total peatland area, total C stock, and total peat C mass per unit area. However, agreement was poor within ~875 km2 grids owing to inconsistencies in peatland cover and little relationship in peat depth between estimates. The greatest disagreement in mean peat C mass per unit area occurred in grids with the largest peatland cover, owing to the spatial coincidence of large cover and deep peat in our high‐resolution assessment. We conclude that total peat C stock estimates in the southern Mackenzie Basin and perhaps in boreal western Canada are likely of reasonable accuracy. However, owing to uncertainties particularly in peat depth, the quality of information regarding the location of these large stocks at scales as wide as several hundreds of square kilometers is presently much more limited.  相似文献   

18.
Despite a recent emphasis on understanding cross-habitat interactions, few studies have examined the ecological linkages between lakes and surrounding terrestrial habitats. The current paradigm of land–lake interactions is typically unidirectional: the view is that nutrients and matter are transported downslope from the surrounding watershed to their ultimate lacustrine destination. Emergent aquatic insects, which spend their larval stages in lake sediments and emerge as adults to mate over land, can act as vectors of material, energy and nutrients from aquatic to terrestrial habitats. In this study, we document a gradient of midge (Diptera: Chironomidae) infall rates into terrestrial habitats (measured as g dw midges m?2 d?1) surrounding eight lakes in Northern Iceland (≈66°N latitude). Lakes ranged from having virtually no midge infall (for example, Helluvaðstjörn, 0.03 g m?2 d?1) to extreme levels (for example, Mývatn, 19 g m?2 d?1) with abundances of midges decreasing logarithmically with distance from shore. Annual midge input rates are estimated as high as 1200–2500 kg midges ha?1 y?1. As midges are approximately 9.2% total N, this can result in a significant fertilization effect of terrestrial habitats with consequences for plant quality and community structure. In addition, we used naturally-occurring δ13C and δ15N isotopes to examine food web structure and diet sources of terrestrial arthropod consumers surrounding lakes with differing amounts of midge input. Terrestrial arthropods showed increased utilization of aquatic-derived (that is, midge) C relative to terrestrial sources as midge infall increased. This pattern was particularly pronounced for predators, such as spiders and opiliones, and some detritivores (Collembola). These findings suggest that, despite being largely ignored, aquatic-to-terrestrial linkages can be large and midges can fuel terrestrial communities by directly serving as resources for predators and decomposers.  相似文献   

19.
Impact of Agricultural Land-use Change on Carbon Storage in Boreal Alaska   总被引:8,自引:0,他引:8  
Climate warming is most pronounced at high latitudes, which could result in the intensification of the extensively cultivated areas in the boreal zone and could further enhance rates of forest clearing in the coming decades. Using paired forest‐field sampling and a chronosequence approach, we investigated the effect of conversion of boreal forest to agriculture on carbon (C) and nitrogen (N) dynamics in interior Alaska. Chronosequences showed large soil C losses during the first two decades following deforestation, with mean C stocks in agricultural soils being 44% or 8.3 kg m?2 lower than C stocks in original forest soils. This suggests that soil C losses from land‐use change in the boreal region may be greater than those in other biomes. Analyses of changes in stable C isotopes and in quality of soil organic matter showed that organic C was lost from soils by combustion of cleared forest material, decomposition of organic matter and possibly erosion. Chronosequences indicated an increase in C storage during later decades after forest clearing, with 60‐year‐old grassland showing net ecosystem C gain of 2.1 kg m?2 over the original forest. This increase in C stock resulted probably from a combination of large C inputs from belowground biomass and low C losses due to a small original forest soil C stock and low tillage frequency. Reductions in soil N stocks caused by land‐use change were smaller than reductions in C stocks (34% or 0.31 kg m?2), resulting in lower C/N ratios in field compared with forest mineral soils, despite the occasional incorporation of high‐C forest‐floor material into field soils. Carbon mineralization per unit of mineralized N was considerably higher in forests than in fields, which could indicate that decomposition rates are more sensitive in forest soils than in field soils to inorganic N addition (e.g. by increased N deposition from the atmosphere). If forest conversion to agriculture becomes more widespread in the boreal region, the resulting C losses (51% or 11.2 kg m?2 at the ecosystem level in this study) will induce a positive feedback to climatic warming and additional land‐use change. However, by selecting relatively C‐poor soils and by implementing management practices that preserve C, losses of C from soils can be reduced.  相似文献   

20.
Evaluating contributions of forest ecosystems to climate change mitigation requires well‐calibrated carbon cycle models with quantified baseline carbon stocks. An appropriate baseline for carbon accounting of natural forests at landscape scales is carbon carrying capacity (CCC); defined as the mass of carbon stored in an ecosystem under prevailing environmental conditions and natural disturbance regimes but excluding anthropogenic disturbance. Carbon models require empirical measurements for input and calibration, such as net primary production (NPP) and total ecosystem carbon stock (equivalent to CCC at equilibrium). We sought to improve model calibration by addressing three sources of errors that cause uncertainty in carbon accounting across heterogeneous landscapes: (1) data‐model representation, (2) data‐object representation, (3) up‐scaling. We derived spatially explicit empirical models based on environmental variables across landscape scales to estimate NPP (based on a synthesis of global site data of NPP and gross primary productivity, n=27), and CCC (based on site data of carbon stocks in natural eucalypt forests of southeast Australia, n=284). The models significantly improved predictions, each accounting for 51% of the variance. Our methods to reduce uncertainty in baseline carbon stocks, such as using appropriate calibration data from sites with minimal human disturbance, measurements of large trees and incorporating environmental variability across the landscape, have generic application to other regions and ecosystem types. These analyses resulted in forest CCC in southeast Australia (mean total biomass of 360 t C ha?1, with cool moist temperate forests up to 1000 t C ha?1) that are larger than estimates from other national and international (average biome 202 t C ha?1) carbon accounting systems. Reducing uncertainty in estimates of carbon stocks in natural forests is important to allow accurate accounting for losses of carbon due to human activities and sequestration of carbon by forest growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号